福田のわかった数学〜高校2年生029〜円と放物線の位置関係(1) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生029〜円と放物線の位置関係(1)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 円と放物線の位置関係(1)\\
\left\{\begin{array}{1}
円\ x^2+y^2=r^2 (r \gt 0)\\
放物線\ y=x^2-1
\end{array}\right.\\
\\
の共有点の個数を調べよ。
\end{eqnarray}
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 円と放物線の位置関係(1)\\
\left\{\begin{array}{1}
円\ x^2+y^2=r^2 (r \gt 0)\\
放物線\ y=x^2-1
\end{array}\right.\\
\\
の共有点の個数を調べよ。
\end{eqnarray}
投稿日:2021.06.07

<関連動画>

福田の数学〜早稲田大学2022年人間科学部第7問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#円と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{7}}\ i$を虚数単位とする。$\alpha=-1+i$とし、zは次の条件をともに満たす複素数とする。
条件1.$\frac{z-\alpha}{z-\bar{\alpha}}$の実部は0である。
条件2.zの虚部は0以上である。
このとき、複素数平面上でzがとりうる値全体の集合を表す図形Cと、実軸で
囲まれる部分の面積は$\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\pi$である。
また、$w=\frac{iz}{z+1}$で表される点wがとりうる値全体の集合を表す図形と、
図形Cで囲まれる部分の面積は$\frac{\boxed{\ \ ウ\ \ }\ \pi+\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$である。

2022早稲田大学人間科学部過去問
この動画を見る 

福田の数学〜中央大学2021年経済学部第3問〜円と円の位置関係と共通接線

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 円C_1:x^2+y^2-r=0と円C_2:x^2-10x+y^2+21=0 について、\\
以下の問いに答えよ。ただし、rは正の定数とする。\\
\\
(1)円C_1と円C_2が接するとき、rの値を求めよ。\\
(2)r=1とする。円C_1の接線lが円C_2にも接しているとき、\\
lの方程式を求めよ。解答はy=ax+bの形で表せ。\\

\end{eqnarray}

2021中央大学経済学部過去問
この動画を見る 

福田のわかった数学〜高校2年生020〜円の極線の公式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#図形と方程式#恒等式・等式・不等式の証明#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円の方程式
円$x^2+y^2=r^2$と円の内部の点$(a,b)$に対して
$ax+by=r^2$
はどんな直線を表すか説明せよ。
ただし、$(a,b)≠(0,0)$とする。
この動画を見る 

福田のわかった数学〜高校2年生019〜円の極線の公式の証明

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円の方程式
円$x^2+y^2=r^2$ に円外の点$(a,b)$から
2本の接線を引く。
このとき2接点$P,Q$を結ぶ直線は
$ax+by=r^2$
となることを証明せよ。
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第3問〜円の外接円の半径と円周上の点と原点の距離の最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#点と直線#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{3}}\ O(0,0),\ A(0,1),\ B(p,q)$を座標平面上の点とし、pは0でないとする。
AとBを通る直線をlとおく。Oを中心としlに接する円の面積を$D_1$で表す。
また、3点O,A,Bを通る円周で囲まれる円の面積を$D_2$とおく。次の問いに答えよ。
(1)$D_1$を$p,q$を使って表せ。
(2)点$(2,2\sqrt3)$を中心とする半径1の円周をCとする。点BがC上を動くときの
$D_1$と$D_2$の積$D_1D_2$の最小値と最大値を求めよ。

2022早稲田大学教育学部過去問
この動画を見る 
PAGE TOP