東京学芸大 - 質問解決D.B.(データベース)

東京学芸大

問題文全文(内容文):
2023東京学芸大学過去問題

①$log x\lt \sqrt x$を示し,$\displaystyle \lim_{x\to\infty}\dfrac{\log x}{x}$を求めよ.
②$m^n=n^m$を満たす自然数$m,n(m\lt n)$をすべて求めよ.

単元: #学校別大学入試過去問解説(数学)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023東京学芸大学過去問題

①$log x\lt \sqrt x$を示し,$\displaystyle \lim_{x\to\infty}\dfrac{\log x}{x}$を求めよ.
②$m^n=n^m$を満たす自然数$m,n(m\lt n)$をすべて求めよ.

投稿日:2023.10.05

<関連動画>

大学入試問題#319 電気通信大学(2010) #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ a \to \infty }\displaystyle \int_{0}^{a}\displaystyle \frac{1}{1+e^x}dx$

出典:2010年電気通信大学 入試問題
この動画を見る 

【理数個別の過去問解説】2016年度東北大学 数学 文系第1問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上で原点Oと3点A(3,1)B(1,2)C(-1,1)を考える。実数s,tに対し、点PをOP=sOA+tOBにより定める。
(1)s,tが条件$-1≦s≦1,-1≦t≦1,-1≦s+t≦1$を満たすとき点P(x,y)の存在する範囲Dを図示しよう。
(2)点Pが(1)で求めた範囲Dを動くとき、内積OP・OCの最大値を求め、そのときのPの座標を求めよう。
この動画を見る 

福岡大(医)連立指数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#福岡大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$は1でない正の実数であるとする.これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
x^{x+y}=y^{10} \\
y^{x+y}=x^{90}
\end{array}
\right.
\end{eqnarray}$

福岡大(医)過去問
この動画を見る 

大学入試問題#752「初見だと少し焦る」 電気通信大学後期(2023) #区分求積法

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n}\displaystyle \sum_{k=2n+1}^{3n} \displaystyle \frac{1}{\sin \displaystyle \frac{\pi\ k}{6n}}$

出典:2023年電子通信大学後期 入試問題
この動画を見る 

大学入試問題#755「基本問題」 北海道大学(1970) #微分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: ますただ
問題文全文(内容文):
$f(x)$は$x \gt 0$で定義された正の値をとる微分可能な関数で
$\{f(x)\}^2=x+1+\displaystyle \int_{1}^{x} \{f(t)\}^2dt$を満たすものとする。

(1)$y=f(x)$の満たす1階微分方程式を求めよ。
(2)$y=f(x)$を任意定数を含まない形で求めよ。

出典:1970年北海道大学 入試問題
この動画を見る 
PAGE TOP