福田の数学〜立教大学2022年理学部第1問(4)〜解と係数の関係 - 質問解決D.B.(データベース)

福田の数学〜立教大学2022年理学部第1問(4)〜解と係数の関係

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(4)\ 2次方程式2x^2+4x+1=0の解を\alpha,\ \beta(\alpha\lt \beta)とする。実数p,qに対して、\\
2次方程式x^2+px+q=0の解が\alpha^3,\ \beta^3であるならば、\hspace{93pt}\\
p=\boxed{\ \ オ\ \ },\ q=\boxed{\ \ カ\ \ }\ である。\hspace{179pt}
\end{eqnarray}
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}(4)\ 2次方程式2x^2+4x+1=0の解を\alpha,\ \beta(\alpha\lt \beta)とする。実数p,qに対して、\\
2次方程式x^2+px+q=0の解が\alpha^3,\ \beta^3であるならば、\hspace{93pt}\\
p=\boxed{\ \ オ\ \ },\ q=\boxed{\ \ カ\ \ }\ である。\hspace{179pt}
\end{eqnarray}
投稿日:2022.09.13

<関連動画>

虚数解の6乗が実数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#解と判別式・解と係数の関係
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^2-ax+a=0は虚数解\betaをもち\beta^6は実数である.aの値を求めよ.$
この動画を見る 

式の値 基本

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{a}{a^2+5a+1}=5のとき,\dfrac{a^2}{a^4+5a^2+1}=?,これを解け.$
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第4問〜3変数の基本対称式と解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#複素数#解と判別式・解と係数の関係#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ 互いに異なる実数a,b,cについて、a+b+c=0,\ bc+ca+ab=-3であるとき、\\
\\
abcのとりうる値の範囲は、\boxed{\ \ ア\ \ } \lt abc \lt \boxed{\ \ イ\ \ }である。\\
\\
さらにa \lt b \lt cのとき、a,b,cのとりうる値の範囲は\\
\\
\boxed{\ \ ウ\ \ } \lt a \lt \boxed{\ \ エ\ \ } \lt b \lt \boxed{\ \ オ\ \ } \lt c \lt \boxed{\ \ カ\ \ }である。
\end{eqnarray}
この動画を見る 

何乗しても実数にならない数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ nを自然数とする.(1+2i)^nは虚数であることを示せ.$
この動画を見る 

99999乗【数学】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
教材: #4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ \alpha,\beta$を$x^2-x+1=0$の異なる解とするとき、
$\alpha^{99999}+\beta^{99999}$の値を求めよ。
この動画を見る 
PAGE TOP