奈良教育大 あまりの問題 - 質問解決D.B.(データベース)

奈良教育大 あまりの問題

問題文全文(内容文):
2023奈良大学過去問題
7で割ったら3余り、17で割ったら8余る自然数3桁で最大は?
単元: #整数の性質#奈良教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023奈良大学過去問題
7で割ったら3余り、17で割ったら8余る自然数3桁で最大は?
投稿日:2023.10.04

<関連動画>

信州大学 整数問題 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
大阪教育大学過去問題
(1)ωを方程式$x^2+x+1=0$の解を1つとする。$(ω+1)^{12}$の値を求めよ。

(2)$(x+1)^{12}$を$x^3-1$で割った余りを求めよ。
この動画を見る 

【数学A/整数】10進法をn進法で表す

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の10進法を[ ]内の表し方で表せ。
(1)57 [2進法]
(2)83 [5進法]
この動画を見る 

【数A】整数の性質:合同式① 整数a,b,cがa²+b²=c²を満たすとき、a,b,cのうち少なくとも1つは5の倍数である。このことを合同式を利用して証明せよ。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)整数a,b,cが$a^2+b^2=c^5$を満たすとき、a,b,cのうち少なくとも1つは5の倍数である。このことを合同式を利用して証明せよ。
(2)nが自然数のとき、$n^3+1$が3で割り切れるものをすべて求めよ。
この動画を見る 

頻出の整数問題!難関大学でよく出る重要な性質【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ m $を整数とする。3次方程式$ x^3+mx^2+(m+8)x+1=0$は有理数の解$a$を持つ。
(1)$a$は整数であることを示せ。
(2)$m$の値を求めよ

一橋大過去問
この動画を見る 

7で割ったときのあまりを表せ。宮城県

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
aを29から34までの整数とする。
これを7で割ったときの余りをaの式で表せ。

宮城県
この動画を見る 
PAGE TOP