cos1°は有理数か【数学 入試問題】【チェビシェフ多項式】 - 質問解決D.B.(データベース)

cos1°は有理数か【数学 入試問題】【チェビシェフ多項式】

問題文全文(内容文):
(1)$n$を自然数とする。
$cos(n+2)\theta+cos n\theta=2cos(n+1)\theta cos\theta$を示せ。

(2)自然数$n$に対し、$cosn\theta=T_n(cos\theta)$を満たす整数係数の$n$次の整式$T_n(x)$が存在することを示せ。

(3)$cos1°$が無理数であることを証明せよ。

数学入試問題過去問
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$n$を自然数とする。
$cos(n+2)\theta+cos n\theta=2cos(n+1)\theta cos\theta$を示せ。

(2)自然数$n$に対し、$cosn\theta=T_n(cos\theta)$を満たす整数係数の$n$次の整式$T_n(x)$が存在することを示せ。

(3)$cos1°$が無理数であることを証明せよ。

数学入試問題過去問
投稿日:2022.04.22

<関連動画>

福田の数学〜慶應義塾大学2021年環境情報学部第4問〜条件を満たす部分集合の個数

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\scriptsize$ ${\Large\boxed{4}}$ $A_n=\left\{1,2,\ldots,n\right\}$を、$1$から$n$までの自然数の集合とする。$S$を$A_n$の部分集合(空集合および$A_n$自身も含む)としたとき、$S'$を$S$の要素それぞれに$1$を加えてできた集合とする。また$S''$を$S'$の要素それぞれにさらに$1$を加えてできた集合とする。たとえば、$A_3=\left\{1,2,3\right\}$の部分集合$S=\left\{1,3\right\}$の場合、$S'=\left\{2,4\right\},S''=\left\{3,5\right\}$
$(1)A_4=\left\{1,2,3,4\right\}$の部分集合$S=\left\{1,2,3\right\}$は$S \cup S'=A_4$となる。このように$A_4$の部分集合で$S \cup S'=A_4$となるものは$\left\{1,2,3\right\}$と$\left\{1,\boxed{\ \ ア\ \ }\right\}$の$2つ$である。
$(2)$$A_n$の$部分集合S$で$S \cup S'=A_n$となるような$S$の個数を$a_n$とすると、$(1)$から分かるように$a_4=2$であり$a_5=\boxed{\ \ イウ\ \ },$ $a_6=\boxed{\ \ エオ\ \ },$$a_7=\boxed{\ \ カキ\ \ },$$a_8=\boxed{\ \ クケ\ \ },$$\ldots,a_{16}=\boxed{\ \ コサシ\ \ }$となる。
$(3)$$A_4=\left\{1,2,3,4\right\}$の$部分集合S$で$S\cup S''=A_4$となるものは$S=\left\{1,\boxed{\ \ ス\ \ }\right\}$だけである。
$(4)A_n$の$部分集合S$で$S \cup S''=A_n$となるような$S$の個数を$b_n$とすると、$(3)$から分かるように$b_4=1$であり$ b_5=\boxed{\ \ セソ\ \ },$$b_6=\boxed{\ \ タチ\ \ },$$b_7=\boxed{\ \ ツテ\ \ },$$b_8=\boxed{\ \ トナ\ \ },$$\ldots,b_{16}=\boxed{\ \ ニヌネ\ \ }$となる。
2021慶應義塾大学環境情報学部過去問
この動画を見る 

気づけば一瞬!!コラボ ベリースライム

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2つの正方形
AF=?
*図は動画内参照
この動画を見る 

図形と計量 余弦定理応用2【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a=4,b=5,c=6$ である$△ABC$において,最も大きい角の余弦を求めよ。また,余弦が最も大きい角はどの角か。
この動画を見る 

福田のおもしろ数学184〜2変数関数の最大最小

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
0≦$x$≦1, 0≦$y$≦1のとき、2変数関数
$f(x,y)$=$5xy-2(x+y)+1$
の最大値$M$、最小値$m$を求めよ。
この動画を見る 

11東京都教員採用試験(数学:1番 整数問題)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#2次方程式と2次不等式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣ $2x^2-2xy+y^2 = 10$をみたす自然数の組(x,y)を求めよ。
この動画を見る 
PAGE TOP