【高校数学】対数関数1.5~例題・応用~【数学Ⅱ】 - 質問解決D.B.(データベース)

【高校数学】対数関数1.5~例題・応用~【数学Ⅱ】

問題文全文(内容文):
次の方程式を解け。
(1)$ \log_2 x+\log_2 {(x-7)}=3$

次の不等式を解け。
(2) $2\log_2 {(2-x)}≧\log_2 x$
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の方程式を解け。
(1)$ \log_2 x+\log_2 {(x-7)}=3$

次の不等式を解け。
(2) $2\log_2 {(2-x)}≧\log_2 x$
投稿日:2018.12.27

<関連動画>

大学入試問題#120 早稲田大学(2003) 対数の不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a \gt 0,\ a \neq 1$
$log\ a(x+2) \geqq log\ a^2(3x+16)$を解け

出典:2003年早稲田大学 入試問題
この動画を見る 

【短時間でポイントチェック!!】常用対数を用いた桁数の求め方〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\log_{ 10 } 2$=0.3010,$\log_{ 10 } 3$=0.4771とする。
$2^{50}$は何桁の整数か?
この動画を見る 

光文社新書「中学の知識でオイラーの公式がわかる」Vol.8対数 log

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
対数 logの解説動画です
この動画を見る 

熊本大 対数関数の最大値

アイキャッチ画像
単元: #大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#対数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#熊本大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の関数の最大値
$f(x)=log_2 x+2log_2(6-x)$


$f(x)=log_2x+log_2(6-x)^2$

出典:熊本大学 過去問
この動画を見る 

指数・対数・対称式

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
43^x=2021 \\
47^y=2021
\end{array}
\right.
\end{eqnarray}$

$\dfrac{5xy+x+y}{4xy-x-y}$の値を求めよ.
この動画を見る 
PAGE TOP