【ベクトル方程式→図の考え方はこれ!】ベクトル方程式の基礎を解説しました〔数学、高校数学〕 - 質問解決D.B.(データベース)

【ベクトル方程式→図の考え方はこれ!】ベクトル方程式の基礎を解説しました〔数学、高校数学〕

問題文全文(内容文):
ベクトル方程式の基礎について解説します。
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
ベクトル方程式の基礎について解説します。
投稿日:2022.04.20

<関連動画>

【高校数学】数Ⅲ-44 極座標と極方程式①

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右図において$(r、0)$を点$P$の極座標といい、
点$O$を①、半直線$OX$を②、角$\theta$を③という。

極座標に対して、$x、y$座標の組$(x,y)$を④座標といい、
x= ⑤、y=⑥、$r = \sqrt{x ^ 2 + y ^ 2}$が成り立つ。

平面上の曲線が、極座標$(r,\theta)$を用いた式$r=f(\theta)$または
$F(r,\theta)=0$で表されるとき、この方程式を曲線の極方程式という。

中心が極$O$、半径が$a$の円→⑦
中心が$(a,0)$、半径が$a$の円→⑧
極$O$を通り、始線となす角が$\beta$の直線→⑨

図は動画内参照
この動画を見る 

【数C】【平面上のベクトル】位置ベクトル ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
$\triangle \rm{ABC}$の重心を$\rm{G}$とするとき、この平面上の任意の点$\rm{P}$に対して、等式$\rm{\overrightarrow{AP}+\overrightarrow{BP}-2\overrightarrow{CP}=3\overrightarrow{GC}}$が成り立つことを証明せよ。

問題2
$\triangle \rm{ABC}$と点$\rm{P}$に対して、次の等式が成り立つとき、点$\rm{P}$の位置をいえ。
(1) $\rm{\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{AB}}$
(2)$\rm{\overrightarrow{AP}+\overrightarrow{BP}+\overrightarrow{CP}=\vec{0}} $
(3)$\rm{\overrightarrow{PA}+\overrightarrow{PC}=\overrightarrow{AC}}$

問題3
$\triangle \rm{ABC}$と点$\rm{P}$に対して、等式 $\rm{5\overrightarrow{AP}+4\overrightarrow{BP}+3\overrightarrow{CP}=\vec{0}}$が成り立っている。
(1)点$\rm{P}$の位置をいえ。
(2)$\triangle \rm{PBC}:\triangle \rm{PCA}:\triangle \rm{PAB}$を求めよ。
この動画を見る 

共通テストでめちゃ使えるベクトルの裏技(s, t問題)(公式)

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テストで使えるベクトルの裏技説明動画です(s, t問題)
この動画を見る 

【数B】ベクトル:ベクトルの基本⑦内積を求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a=\sqrt3,b=5,a-b=\sqrt5$のとき、内積a・bを求めよ.
この動画を見る 

福田の数学〜2点が動くときはどちらか一方を固定する〜東京大学2018年文系第4問〜平面ベクトルと点の動ける領域

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
4 放物線$y=x^2$ のうち$-1 \leqq x \leqq 1$をみたす部分を C とする。座標平面上の原点Oと点A(1,0)を考える。
( 1 )点 P が C 上を動くとき、$\overrightarrow{OQ}=2\overrightarrow{ OP}$ をみたす点 Q の軌跡を求めよ。
( 2 )点 P が C 上を動き、点 R が線分 OA 上を動くとき$\overrightarrow{ OS }=\overrightarrow{ 2OP }+\overrightarrow{ OR }$をみたす点 S が動く領域を座標平面上に図示し、その面積を求めよ。

2018東京大学文過去問
この動画を見る 
PAGE TOP