福田の数学〜慶應義塾大学2021年理工学部第2問〜複素数と多項式の商と余り - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年理工学部第2問〜複素数と多項式の商と余り

問題文全文(内容文):
${\Large\boxed{2}}$ (1)複素数$\alpha$は$\alpha^2+3\alpha+3=0$ を満たすとする。このとき、$(\alpha+1)^2(\alpha+2)^5=\boxed{\ \ キ\ \ }$
である。また、$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組を全て求めよ。

(2)多項式$(x+1)^3(x+2)^2$を$x^2+3x+3$で割った時の商は$\boxed{\ \ ク\ \ }$、余りは$\boxed{\ \ ケ\ \ }$である。
また、$(x+1)^{2021}$を$x^2+3x+3$で割った時の余りは$\boxed{\ \ コ\ \ }$である。

2021慶應義塾大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ (1)複素数$\alpha$は$\alpha^2+3\alpha+3=0$ を満たすとする。このとき、$(\alpha+1)^2(\alpha+2)^5=\boxed{\ \ キ\ \ }$
である。また、$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組を全て求めよ。

(2)多項式$(x+1)^3(x+2)^2$を$x^2+3x+3$で割った時の商は$\boxed{\ \ ク\ \ }$、余りは$\boxed{\ \ ケ\ \ }$である。
また、$(x+1)^{2021}$を$x^2+3x+3$で割った時の余りは$\boxed{\ \ コ\ \ }$である。

2021慶應義塾大学理工学部過去問
投稿日:2021.02.21

<関連動画>

防衛医大 複素数の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)#防衛医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\displaystyle \frac{1+\sqrt{ 3 }i}{2},\beta=\displaystyle \frac{1-\sqrt{ 3 }i}{2}$

$\gamma=\displaystyle \frac{\beta^2-4\beta +3}{\alpha^{n+2}-\alpha^{n+1}+\alpha^{n}+\alpha^{3}-2\alpha^{2}+5\alpha-2}$

$\gamma^3$の値を求めよ

出典:2011年防衛医科大学校 過去問
この動画を見る 

群馬大 複素数 数列の和

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Z=\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$

$Z+2Z^2+3Z^3+4Z^4+…+19Z^{19}+20Z^{20}$

出典:群馬大学 過去問
この動画を見る 

複素数 広島大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^2=8+6i$のとき,$z^3-16z-\dfrac{100}{z}$の値を求めよ.

1966広島大過去問
この動画を見る 

【高校数学】数Ⅲ-5 複素数の極形式①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の複素数を極形式で表そう.
ただし,偏角$\theta$は$0\leqq \theta \lt 2\pi$とする.

④$1+i$
⑤$-2$
この動画を見る 

藤田医科大学 式の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#藤田医科大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a,b,c,dは実数である.
$\dfrac{(a^2+b^2)(c^2+d^2)}{(ac+bd)^2}$の最小値を求めよ.
この動画を見る 
PAGE TOP