問題文全文(内容文):
${\Large\boxed{2}}$ (1)複素数$\alpha$は$\alpha^2+3\alpha+3=0$ を満たすとする。このとき、$(\alpha+1)^2(\alpha+2)^5=\boxed{\ \ キ\ \ }$
である。また、$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組を全て求めよ。
(2)多項式$(x+1)^3(x+2)^2$を$x^2+3x+3$で割った時の商は$\boxed{\ \ ク\ \ }$、余りは$\boxed{\ \ ケ\ \ }$である。
また、$(x+1)^{2021}$を$x^2+3x+3$で割った時の余りは$\boxed{\ \ コ\ \ }$である。
2021慶應義塾大学理工学部過去問
${\Large\boxed{2}}$ (1)複素数$\alpha$は$\alpha^2+3\alpha+3=0$ を満たすとする。このとき、$(\alpha+1)^2(\alpha+2)^5=\boxed{\ \ キ\ \ }$
である。また、$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組を全て求めよ。
(2)多項式$(x+1)^3(x+2)^2$を$x^2+3x+3$で割った時の商は$\boxed{\ \ ク\ \ }$、余りは$\boxed{\ \ ケ\ \ }$である。
また、$(x+1)^{2021}$を$x^2+3x+3$で割った時の余りは$\boxed{\ \ コ\ \ }$である。
2021慶應義塾大学理工学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#複素数#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ (1)複素数$\alpha$は$\alpha^2+3\alpha+3=0$ を満たすとする。このとき、$(\alpha+1)^2(\alpha+2)^5=\boxed{\ \ キ\ \ }$
である。また、$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組を全て求めよ。
(2)多項式$(x+1)^3(x+2)^2$を$x^2+3x+3$で割った時の商は$\boxed{\ \ ク\ \ }$、余りは$\boxed{\ \ ケ\ \ }$である。
また、$(x+1)^{2021}$を$x^2+3x+3$で割った時の余りは$\boxed{\ \ コ\ \ }$である。
2021慶應義塾大学理工学部過去問
${\Large\boxed{2}}$ (1)複素数$\alpha$は$\alpha^2+3\alpha+3=0$ を満たすとする。このとき、$(\alpha+1)^2(\alpha+2)^5=\boxed{\ \ キ\ \ }$
である。また、$(\alpha+2)^s(\alpha+3)^t=3$となる整数$s,t$の組を全て求めよ。
(2)多項式$(x+1)^3(x+2)^2$を$x^2+3x+3$で割った時の商は$\boxed{\ \ ク\ \ }$、余りは$\boxed{\ \ ケ\ \ }$である。
また、$(x+1)^{2021}$を$x^2+3x+3$で割った時の余りは$\boxed{\ \ コ\ \ }$である。
2021慶應義塾大学理工学部過去問
投稿日:2021.02.21