東京医科大 見掛け倒しな問題 - 質問解決D.B.(データベース)

東京医科大 見掛け倒しな問題

問題文全文(内容文):
$1008$の正の約数$n$個を大きい順に並べた数列を
$a_1,a_2・・・・・・,a_n$とし、$S(x)$を$S(x)=\displaystyle \sum_{k=1}^n a_k^x $とする。
①$S(0)$ ②$S(1)$ ③$S(-1)$ ④$\dfrac{S(2)}{S(1)}$
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#東京医科大学#東京医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1008$の正の約数$n$個を大きい順に並べた数列を
$a_1,a_2・・・・・・,a_n$とし、$S(x)$を$S(x)=\displaystyle \sum_{k=1}^n a_k^x $とする。
①$S(0)$ ②$S(1)$ ③$S(-1)$ ④$\dfrac{S(2)}{S(1)}$
投稿日:2023.06.05

<関連動画>

福島県立医大 漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
一般項$a_n$を求めよ
$a_1=2$
$S_nS_{n+1}=9^n$

出典:2006年福島県立医科大学 過去問
この動画を見る 

【群数列ニガテな人は見て!!】群数列はこれさえ出来れば大丈夫!〔数学、高校数学〕

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
2から順に偶数を並べた数列で、 各郡に含まれる数が、1、3、5$\cdots$個と なるような数列を考える。
2|4,6,8|10,12,14,16,18|20,$\cdots$
このとき、第n郡の初項と末項を求めよ
この動画を見る 

漸化式と整数問題の融合

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$a_1=10,a_{n+1}=2a_n+3^{n+1}$
$a_n$が7の倍数となるような$n$を求めよ.
この動画を見る 

【数B】数列:2つ前までさかのぼる数学的帰納法:すべての自然数nについて、t=x+1/xとおくと、x^n+1/x^nはtのn次式であることを証明せよ。

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
すべての自然数$n$について、$t=x+\dfrac{1}{x}$とおくと、$\dfrac{x^n+1}{x^n}$
は$t$の$n$次式であることを証明せよ。

この動画を見る 

【数B】数列:nを自然数とするとき、4^(n+1)+9^nは5の倍数であることを、数学的帰納法を用いて証明せよ。

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
nを自然数とするとき、$4^(n+1)+9^n$は5の倍数であることを、数学的帰納法を用いて証明せよ。
この動画を見る 
PAGE TOP