いろんな要素いっぱいの良問 日本医科大 - 質問解決D.B.(データベース)

いろんな要素いっぱいの良問 日本医科大

問題文全文(内容文):
$\left(\frac{3}{2}x+\frac{3}{2}x+1 \right)^{n+2}$
を展開したときの$x^3$の係数を$Am$とする。
①$\displaystyle \lim_{ n \to x } \dfrac{1}{n^4}\displaystyle \sum_{k=1}^n A_k$
②$\displaystyle \lim_{ n \to (x) } \displaystyle \sum_{k=1}^n \dfrac{1}{A_n}$

日本医科大過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\left(\frac{3}{2}x+\frac{3}{2}x+1 \right)^{n+2}$
を展開したときの$x^3$の係数を$Am$とする。
①$\displaystyle \lim_{ n \to x } \dfrac{1}{n^4}\displaystyle \sum_{k=1}^n A_k$
②$\displaystyle \lim_{ n \to (x) } \displaystyle \sum_{k=1}^n \dfrac{1}{A_n}$

日本医科大過去問
投稿日:2023.06.04

<関連動画>

整式の剰余 大分大(医)の復習問題

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$x^n$を$x^4+1$で割った余りを求めよ.

大分大(医)過去問
この動画を見る 

【丁寧に解説】テストによく出る繁分数式(分数の中に分数)を解説!

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を簡単にせよ。
(1)
$\displaystyle \frac{x-2-\displaystyle \frac{2}{x-1}}{x+2+\displaystyle \frac{2}{x-1}}$


(2)
$1-\displaystyle \frac{1}{1-\displaystyle \frac{1}{1-x}}$
この動画を見る 

福田のわかった数学〜高校2年生第7回〜2変数関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#平均変化率・極限・導関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 2変数関数の最大最小
$x,y$が$0 \leqq x \leqq 1,0 \leqq y \leqq 1$を
満たして変化するときの2変数関数
$f(x,y)=5xy-2(x+y)+1$
の最大値$M,$最小値$m$を求めよ。
この動画を見る 

福田のおもしろ数学307〜不等式の証明エレガントに証明しよう

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a\geqq 1,b\geqq 1$のとき、$\sqrt{a-1}+\sqrt{b-1}\leqq \sqrt{ab}$であることを示して下さい。
この動画を見る 

特殊なBBB部分分数分解

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\dfrac{1^2}{1・3}+\dfrac{2^2}{3・5}+\dfrac{3^2}{5・7}+・・・・+\dfrac{50^2}{99・101}$
この動画を見る 
PAGE TOP