開成高校 整数問題 - 質問解決D.B.(データベース)

開成高校 整数問題

問題文全文(内容文):
開成高校過去問題
A,B(A<B)は自然数で最大公約数が$g(\neq1)$で最小公倍数がl
$A^2+B^2+g^2+l^2 = 1300$を満たすA,Bを求めよ
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)#開成高等学校
指導講師: 鈴木貫太郎
問題文全文(内容文):
開成高校過去問題
A,B(A<B)は自然数で最大公約数が$g(\neq1)$で最小公倍数がl
$A^2+B^2+g^2+l^2 = 1300$を満たすA,Bを求めよ
投稿日:2023.08.04

<関連動画>

整数問題 基本問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを整数とする.
$n^8-6n^6+9n^4-4n^2$は720の倍数であることを示せ.
この動画を見る 

福田のおもしろ数学336〜連続する奇数の素数の和は3つ以上の因数をもつ証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
連続する奇数の素数$p,q$に対し$p+q$は$1$より大きい3個以上の整数の積で表される。これを証明してください。
この動画を見る 

高校入試だけどガウス記号 明大明治

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
xに対してxをこえない最大の整数[x]と表すことにする。
3<x<5のとき
$x^2 - [x] \times x - [x] = 0$となるxの値を求めよ。

明治大学付属明治高等学校
この動画を見る 

福田のおもしろ数学329〜商が平方数となる正の整数の個数と総和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\frac{13!}{m}$が平方数となる正の整数mの個数と総和を求めて下さい。
この動画を見る 

教え子に授業させてみた

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2a^2+(8-b)a-4b=2021$
正の整数a,bの組(a,b)をすべて求めよ。
この動画を見る 
PAGE TOP