フツーにやっても出るけどね三次方程式解と係数の関係 - 質問解決D.B.(データベース)

フツーにやっても出るけどね三次方程式解と係数の関係

問題文全文(内容文):
$x^3+2x^2+3x+4=0$の3つの解を$\alpha,\beta,\delta$としたとき、
次の3つを解にもつ3次方程式を作れ.
(1)$\dfrac{1}{\alpha},\dfrac{1}{\beta},\dfrac{1}{\delta}$
(2)$\dfrac{1}{\alpha^2},\dfrac{1}{\beta^2},\dfrac{1}{\delta^2}$
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+2x^2+3x+4=0$の3つの解を$\alpha,\beta,\delta$としたとき、
次の3つを解にもつ3次方程式を作れ.
(1)$\dfrac{1}{\alpha},\dfrac{1}{\beta},\dfrac{1}{\delta}$
(2)$\dfrac{1}{\alpha^2},\dfrac{1}{\beta^2},\dfrac{1}{\delta^2}$
投稿日:2023.05.21

<関連動画>

福田の数学〜明治大学2022年全学部統一入試12AB第1問(2)〜対数方程式と対称式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)1ではない正の実数$x,\ y$が次の条件を満たすとする。
$\left\{\begin{array}{1}
xy=\displaystyle\frac{1}{4}\\
\displaystyle\frac{1}{\log_2x}+\displaystyle\frac{1}{\log_2y}=\frac{8}{21}
\end{array}\right.$
このとき、$x+y=\frac{\boxed{\ \ キク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}}{\boxed{\ \ コサ\ \ }}$である。

2022明治大学全統過去問
この動画を見る 

指数方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
以下を解け
$9^x+15^x=25^x$
この動画を見る 

2022早稲田大(社)整式の剰余

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整式P(x)をx-1で割ると1あまり,$ (x+1)^2 $で割ると3x+2あまる.
P(x)を次の式で割ったあまりは?
(1)$ x+1$ (2)$(x+1)(x-1)$ (3)$(x-1)(x+1)^2$

2022早稲田大過去問
この動画を見る 

【高校数学】数Ⅲ-18 複素数と三角形①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
複素数$\sqrt3+i,4i$が表す点をそれぞれ$P,Q$とする.
このとき,半直線$PQ$が実軸の正の向きよなす角を求めよ.
この動画を見る 

複素数の計算 群馬大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\dfrac{\sqrt3-1}{2}+\dfrac{\sqrt3+1}{2}i$である.$z^{12}$の値を求めよ

(1)$\dfrac{z}{1+i}$を$a+bi$の形で表せ.
(2)$z$を極形式で表せ.

群馬大過去問
この動画を見る 
PAGE TOP