【高校数学】組合わせ~順列との違いを明確に~ 1-10【数学A】 - 質問解決D.B.(データベース)

【高校数学】組合わせ~順列との違いを明確に~ 1-10【数学A】

問題文全文(内容文):
組合わせ 順列との違いについての説明した動画です
チャプター:

00:00 はじまり

00:29 組合せの説明

01:33 具体例で学ぶ

04:01 公式の説明

06:25 実際に計算しよう

07:29 性質の説明

09:39 まとめ

10:04 まとめノート

単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
組合わせ 順列との違いについての説明した動画です
投稿日:2020.06.01

<関連動画>

【数A】確率:東北大 2008年 大問4(2)

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Pが次のルール (i), (i) に従って数直線上を移動するものとする。
(i)$1,2,3,4,5,6$の目が同じ割合で出るサイコロを振り, 出た目の数をkとする.
(ii)Pの座標aについて, $a\gt 0$ならば座標$a-k$の点へ移動し, $a\gt 0$ならば座標$a+k$の点へ移動する.
(iii)原点に移動したら終了し, そうでなければ(i) を繰り返す。

(2) Pの座標が$1,2,... 6$ のいずれかであるとき,
ちょうど n回サイコロを振って
原点で終了する確率を求めよ.
この動画を見る 

数学「大学入試良問集」【4−1 組分け問題①】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
何人かの人をいくつかの部屋に分ける問題を考える。
ただし、各部屋は十分に大きく、定員については考慮しなくてよい。
(1)
7人を2つの部屋$A,B$に分ける。
 (ⅰ)部屋$A$に3人、部屋$B$に4人となる分け方は全部で何通りあるか。
 (ⅱ)どの部屋も1人以上になる分け方は全部で何通りあるか。
 (ⅲ)(ⅱ)のうち、部屋$A$の人数が奇数である分け方は全部で何通りあるか。

(2)
4人を三つの部屋$A,B,C$に分ける。
どの部屋も1人以上になる分け方は全部で何通りあるか。

(3)
大人4人、こども3人の計7人を三つの部屋$A,B,C$に分ける。
 (ⅰ)どの部屋も大人が1人以上になる分け方は全部で何通りあるか。
 (ⅱ)(ⅱ)のうち、三つの部屋に子ども3人が1人ずつ入る分け方は全部で何通りあるか。
 (ⅲ)どの部屋も大人が1人以上で、かつ、各部屋とも2人以上になる分け方は全部で何通りあるか。
この動画を見る 

一橋大 確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロを$n$回投げ、$k$回目の目を$a_k$。
$S_n=\displaystyle \sum_{k=1}^n 10^{n-k}a_k$

次の確率を求めよ。
$S_n$が
(1)4の倍数
(2)6の倍数
(3)7の倍数

出典:2013年一橋大学 過去問
この動画を見る 

福田のわかった数学〜高校1年生067〜場合の数(6)色々な順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(6) 並べ方色々
さいころを4回投げたとき、出た目を順に$a,b,c,d$とする。
次のような目の出方は何通りあるか。
(1)全て異なる目が出る
(2)$a \lt b \lt c \lt d$
(3)$a \leqq b \leqq c \leqq d$
この動画を見る 

確率の基本問題

アイキャッチ画像
単元: #場合の数と確率
指導講師: 鈴木貫太郎
問題文全文(内容文):
赤玉6個青玉5個から4個取り出します。
赤玉と青玉がそれぞれ少なくとも1個含まれる確率は?

東北学院大過去問
この動画を見る 
PAGE TOP