整数問題 - 質問解決D.B.(データベース)

整数問題

問題文全文(内容文):
$n$は自然数である.
$f(n)=n^3+2n^2+2n$
$g(n)=3n+2$
整数$f(n)$は整数$g(n)$の倍数である.
nをすべて求めよ.

単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$f(n)=n^3+2n^2+2n$
$g(n)=3n+2$
整数$f(n)$は整数$g(n)$の倍数である.
nをすべて求めよ.

投稿日:2023.04.06

<関連動画>

札幌医科大学2021 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$n$に対し$N=(n+2)^3-n(n+1)(n+2)$が$36$の倍数になるような$n$をすべて求めよ.

2021札幌医大過去問
この動画を見る 

無題

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ n^2-331n-2022$が$101$の倍数となる
$ 2$桁の自然数$ n$を$1$つ見つけよ.
この動画を見る 

2022年の整数問題 愛工大名電高校2022入試問題解説34問目

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{2022}{2n+1}$が素数になる自然数nのうち最大のものを求めよ。

2022愛知工業大学名電高等学校
この動画を見る 

一橋大 整数問題 ピタゴラス数 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'90一橋大学過去問題
直角三角形の3辺が整数
面積は偶数であることを示せ。

*図は動画内参照
この動画を見る 

中学生も挑戦して!関西医科 因数分解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(a+1)(a-1)(b+1)(b-1)=4ab$をみたす整数を求めよ.$(a,b)(a<b)$

関西医科大過去問
この動画を見る 
PAGE TOP