Euler's formula 中学生の知識でオイラーの公式を理解しよう Vol.3 三角比 余弦定理 加法定理 - 質問解決D.B.(データベース)

Euler's formula 中学生の知識でオイラーの公式を理解しよう  Vol.3 三角比 余弦定理 加法定理

問題文全文(内容文):
Euler's formula 中学生の知識でオイラーの公式を理解しよう  Vol.3 三角比 余弦定理 加法定理
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Euler's formula 中学生の知識でオイラーの公式を理解しよう  Vol.3 三角比 余弦定理 加法定理
投稿日:2017.07.07

<関連動画>

京都府採用試験数学【2016】

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#場合の数と確率#平面上のベクトル#複素数平面#図形と計量#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#整数の性質#場合の数#確率#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#三角関数とグラフ#指数関数#対数関数#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#微分とその応用#積分とその応用#複素数平面#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#数学(高校生)#数C#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
1. x+y+z=10の正の整数解の個数を求めよ。

2. 3つのサイコロを投げる。
出る目の最大値と最小値の差が2になる確率を求めよ。

3. 複素数$(\frac{-1+\sqrt{3}i}{2})^{2015} + (\frac{-1-\sqrt{3}i}{2})^{2015}$

4. $log_{2}3$は無理数を示せ

5. $△OAB = \frac{|a_1b_2-a_2b_1|}{2}$を示せ
*図は動画内参照

6. f(x)=e^x sinx
(1) $0 \leqq x \leqq \pi$ y=f(x)の極大値を求めよ。

(2)x軸とy=f(x) ($0 \leqq x \leqq \pi$)で囲まれた面積を求めよ。

7. $\frac{1}{2015} , \frac{2}{2015} , \cdots , \frac{2015}{2015}$のうち既約分数の個数を求めよ。

8. $n \in \mathbb{ N }$
$2(\sqrt{n+1} - 1) < 1 + \frac{1}{\sqrt 2} + \frac{1}{\sqrt 3} + \cdots + \frac{1}{\sqrt n}$
この動画を見る 

福田のわかった数学〜高校2年生065〜三角関数(4)三角不等式の基礎

アイキャッチ画像
単元: #数Ⅱ#式と証明#三角関数#恒等式・等式・不等式の証明#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(4) 三角不等式の基礎
(1)$\sin\theta \gt -\frac{1}{2}$ (2)$\cos\theta \leqq \frac{\sqrt3}{2}$ (3)$\tan\theta \gt -1$
の解を(ア)$0 \leqq \theta \lt 2\pi$ (イ)$-\pi \leqq \theta \lt \pi$
(ウ)一般解 としてそれぞれ求めよ。
この動画を見る 

【高校数学】 数Ⅱ-95 三角関数のグラフ①

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数のグラフと周期を書こう。

①$y=\sin\theta$

②$y=\cos\theta$

③$y=\tan\theta$
この動画を見る 

福田のおもしろ数学089〜サイン100乗とコサイン100乗の和の最大最小

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ
指導講師: 福田次郎
問題文全文(内容文):
$\theta$がすべての実数を動くとき$\sin^{100}\theta$+$\cos^{100}\theta$ の最大値、最小値を求めよ。
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(3)〜三角関数の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}} (3)-\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$
のとき、次の関数が最大値をとるときのxの値を求めよ。
$y=\sin x+\cos^2x$

2021中央大経済学部過去問
この動画を見る 
PAGE TOP