2023東大 確率 - 質問解決D.B.(データベース)

2023東大 確率

問題文全文(内容文):
黒3,赤4,白5を一列に並べる.
(1)どの赤も隣り合わない確率を求めよ.
(2)どの赤も隣り合わないとき、どの黒も隣り合わない条件付き確率を求めよ.

2023東大過去問
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
黒3,赤4,白5を一列に並べる.
(1)どの赤も隣り合わない確率を求めよ.
(2)どの赤も隣り合わないとき、どの黒も隣り合わない条件付き確率を求めよ.

2023東大過去問
投稿日:2023.03.01

<関連動画>

【高校数学】共通部分と和集合~⋂と⋃の記号のイメージ授けます~ 1-2【数学A】

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#場合の数と確率#集合と命題(集合・命題と条件・背理法)#場合の数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
共通部分と和集合の説明動画です
この動画を見る 

Japanese Mathematics Olympiad 2017

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1⃣
How many pairs of positive whole numbers (a,b)
such that ab=29! , a<b , a&b are coprime.

2⃣
How many sets of positive whole numbers (a,b,c,d,e)
such that all of them are different & a+b=c+d+e=29
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第1問(2)〜領域に属する確率

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#整数の性質#確率#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1個のさいころを投げる試行を2回繰り返し、
1回目に出た目をa,2回目に出た目をbとする。xy平面上で直線
$l:\frac{x}{a}+\frac{y}{b}=1$
を考える。lとx軸の交点をP、lとy軸の交点をQ、原点をOとし、
三角形OPQの周および内部をD、三角形OPQの面積をSとする。

(2)点(2,\ 4)がDに含まれる確率は
$\frac{\boxed{キ}}{\boxed{ク}}$
点(2,\ 3)がDに含まれる確率は$\frac{\boxed{ケ}}{\boxed{コ}}$である。

2022上智大学文系過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第2問〜デコボコ数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 10進法で表したときm桁(m \gt 0)である正の整数nの第i桁目(1 \leqq i \leqq m)を\\
m_iとしたとき、i≠jのときn_i≠n_jであり、かつ、次の(\textrm{a})または(\textrm{b})のいずれか\\
が成り立つとき、nを10進法m桁のデコボコ数と呼ぶことにする。\\
(\textrm{a})1 \leqq i \lt mであるiに対して、iが奇数の時n_i \lt n_{i+1}となり、\\
iが偶数の時n_i \gt n_{i+1}となる。\\
(\textrm{b})1 \leqq i \lt mであるiに対して、iが奇数の時n_i \gt n_{i+1}となり、\\
iが偶数の時n_i \lt n_{i+1}となる。\\
例えば、361は(\textrm{a})を満たす10進法3桁のデコボコ数であり、52409は(\textrm{b})を\\
満たす10進法5桁のデコボコ数である。なお、4191は(\textrm{a})を満たすが「i≠jのとき\\
n_i≠n_jである」条件を満たさないため、10進法4桁のデコボコ数ではない。\\
(1)nが10進法2桁の数(10 \leqq n \leqq 99)の場合、n_1≠n_2であれば(\textrm{a})または(\textrm{b})を\\
満たすため、10進法2桁のデコボコ数は\ \boxed{\ \ アイ\ \ }\ 個ある。\\
(2)nが10進法3桁の数(100 \leqq n \leqq 999)の場合、(\textrm{a})を満たすデコボコ数は\\
\boxed{\ \ ウエオ\ \ }個、(\textrm{b})を満たすデコボコ数は\boxed{\ \ カキク\ \ }個あるため、\\
10進法3桁のデコボコ数は合計\boxed{\ \ ケコサ\ \ }個ある。\\
(3)nが10進法4桁の数(1000 \leqq n \leqq 9999)の場合、(\textrm{a})を満たすデコボコ数は\\
\boxed{\ \ シスセソ\ \ }個、(\textrm{b})を満たすデコボコ数は\boxed{\ \ タチツテ\ \ }個あるため、\\
10進法4桁のデコボコ数は合計\boxed{\ \ トナニヌ\ \ }個ある。また10進法4桁のデコボコ数\\
の中で最も大きなものは\boxed{\ \ ネノハヒ\ \ }、最も小さなものは\boxed{\ \ フヘホマ\ \ }である。\\
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 

福田の一夜漬け数学〜確率漸化式(4)〜名古屋市立大学の問題に挑戦(受験編)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#名古屋市立大学
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $A,B$の2人がサイコロを使って次のようなルールでゲームを行う。
先に1を出した方を勝ちとして終了する。
$(\textrm{i})A$が1回目にサイコロを投げる
$(\textrm{ii})A$がサイコロを投げて1,2以外が出たときは、次の回はBがサイコロを投げる。
$(\textrm{iii})A$がサイコロを投げて1,2以外が出たときは、次の回はBがサイコロを投げる。
$(\textrm{iv})B$がサイコロを投げて1,2,3以外が出たときは、次の回はAがサイコロを投げる。
$(\textrm{v})B$がサイコロを投げて2か3が出たときは、次の回もBがサイコロを投げる。

(1)$k$回目にAがサイコロを投げる確率を$P_k,B$が投げる確率を$Q_k$とする。
$P_{k+1}$を$P_k$と$Q_k$を用いて表せ。

(2)k回目に$A$がサイコロを投げて勝つ確率を$R_k$とする。$R_k$を$k$を用いて表せ。
この動画を見る 
PAGE TOP