【高校数学】命題と証明~基礎固めをしっかりと~ 1-18【数学Ⅰ】 - 質問解決D.B.(データベース)

【高校数学】命題と証明~基礎固めをしっかりと~ 1-18【数学Ⅰ】

問題文全文(内容文):
命題と証明 基礎固め動画です
チャプター:

00:00 はじまり

00:23 言葉の説明

01:16 具体例

04:53 命題の証明しよう

07:40 まとめ

05:55 まとめノート

単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
命題と証明 基礎固め動画です
投稿日:2020.08.18

<関連動画>

【数Ⅰ】中高一貫校問題集3(論理・確率編)33:集合と命題:命題と証明:背理法を使った証明

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
教材: #TK数学#TK数学問題集3(論理・確率編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
√2が無理数であることを用いて「1+2√2が無理数である」ことを証明せよ【背理法】
この動画を見る 

因数分解 國学院久我山

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$4(2x+ \frac{y}{2})^2 - 4( \frac{x}{2} - 2y)^2$

國學院大學久我山高等学校
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第5問〜三角比と空間図形の計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#空間図形#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{5}}\ 半径4\sqrt2の球面S上に3点A,B,Cがあり、線分AB,BC,CAの長さは\\
それぞれAB=4\sqrt6,BC=10,C=6とする。\\
(1)\cos\angle ABC=\boxed{\ \ テ\ \ }である。平面ABCで球面Sを切った切り口の円をTとする。\\
Tの半径は\boxed{\ \ ト\ \ }である。点Dが円T上を動くとき、\triangle DABの面積の最大値は\\
\boxed{\ \ ナ\ \ }である。\\
(2)球面Sの中心Oから平面ABCに下ろした垂線OHの長さは\boxed{\ \ ニ\ \ }である。\\
(3)点Eは球面S上を動くとき、三角錐EABCの体積の最大値は\boxed{\ \ ヌ\ \ }である。
\end{eqnarray}

2022慶應義塾大学理工学部過去問
この動画を見る 

2020問題 整式の剰余

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2020}$を$x^4+x^3+x^2+x+1$で割った余りを求めよ
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学IA問題2[1]。2次関数の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} [1] 陸上競技の短距離100m走では、100mを走るのに\hspace{160pt}\\
かかる時間(以下、タイムと呼ぶ)は、1歩あたりの\\
進む距離(以下、ストライドと呼ぶ)と1秒当たりの歩数(以下、ピッチと呼ぶ)に関係がある。\\
ストライドとピッチはそれぞれ以下の式で与えられる。\\
ストライド (m/歩) =\frac{100(m)}{100mを走るのにかかった歩数(歩)},\\
\\
 ピッチ (歩/秒) =\frac{100m を走るのにかかった歩数(歩)}{タイム(秒)}\\
\\
ただし、100mを走るのにかかった歩数は、最後の1歩が\\
ゴールラインをまたぐこともあるので、\\
少数で 表される。以下、単位は必要のない限り省略する。\\
例えば、タイムが10.81で、そのときの歩数が48.5であったとき、\\
ストライドは\frac{100}{48.5}より約2.06、ピッチ は \\
\frac{ 48.5 }{10.81} より約4.49である。\\
\\
(1)ストライドをx、ピッチをzとおく。ピッチは1秒当たりの歩数、\\
ストライドは1歩あたりの進む距離\\
なので、1秒あたりの進む距離すなわち平均速度は、\\
xとzを用いて\boxed{\ \ ア\ \ }(m/秒) と表される。\\
これよりタイムと、ストライド、ピッチとの関係はタイム=\frac{100}{\boxed{\ \ ア\ \ }} と\\
表されるので\boxed{\ \ ア\ \ } が最大となるとき\\
にタイムが最もよくなる。ただし、タイムがよくなるとは、\\
タイムの値が小さくなることである。\\
\\
\\
\boxed{\ \ ア\ \ }の解答群\\
⓪ x+z ①z-x ②xz ③\frac{x+z}{2} ④\frac{z-x}{2} ⑤\frac{xz}{2}\\
\\
(2)太郎さんは、①に着目して、タイムが最もよくなるスライドと\\
ピッチを考えることにした。右に表は、太郎さんが練習で\\
100mを3回走った時のストライドとピッチのデータである。\\
また、ストライドとピッチにはそれぞれ限界がある。太郎さんの場合、\\
ストライドの最大値は2.40、ピッチの最大値は4.80である。\\
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという\\
関係があると考えてピッチがストライドの1次関数として\\
表されると仮定した。このとき、ピッチzはストライドxを用いて\\
z=\boxed{\ \ イウ\ \ }\ x+\frac{\boxed{\ \ エオ\ \ }}{5} \ldots② と表される。\\
②が太郎さんのストライドの最大値2.40とピッチの最大値4.80\\
まで成り立つと仮定すると、xの値の範囲は\\
\boxed{\ \ カ\ \ }.\boxed{\ \ キク\ \ } \leqq x \leqq 2.40\\
\\
(3)y=\boxed{\ \ ア\ \ }とおく。②をy=\boxed{\ \ ア\ \ }に代入することにより、\\
yをxの関数としてあらわすことができる。太郎さんのタイムが最もよくなるストライド\\
とピッチを求めるためには、\boxed{\ \ カ\ \ }.\boxed{\ \ キク\ \ } \leqq x \leqq 2.40の範囲で\\
yの値を最大にするxの値を見つければよい。このときyの値が最大になるのは\\
x=\boxed{\ \ ケ\ \ }.\boxed{\ \ コサ\ \ }のときである。よって、太郎さんのタイムが最もよくなるのは、\\
ストライドが\boxed{\ \ ケ\ \ }.\boxed{\ \ コサ\ \ }のときであり、このとき、ピッチは\boxed{\ \ シ\ \ }.\boxed{\ \ スセ\ \ }\\
である。また、このときの太郎さんのタイムは①により\boxed{\ \ ソ\ \ }である。\\
\\
\boxed{\ \ ソ\ \ }の解答群\\
⓪9.68  ①9.97  ②10.09  ③10.33  ④10.42  ⑤10.55
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 
PAGE TOP