秋田大(医) 整式の剰余 - 質問解決D.B.(データベース)

秋田大(医) 整式の剰余

問題文全文(内容文):
$n$を自然数とし,A,Bを整数とする.
$x^{2n}-4x^8+Ax+B$が$x^2-x+1$で割り切れるA,Bの値を求めよ.

秋田大(医)過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とし,A,Bを整数とする.
$x^{2n}-4x^8+Ax+B$が$x^2-x+1$で割り切れるA,Bの値を求めよ.

秋田大(医)過去問
投稿日:2023.02.18

<関連動画>

日本医科大学 6次方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
日本医科大学過去問題
*$x^6+2x^5-38x^4+228x^2+72x-216=0$
$Z=x+\frac{α}{x}$とし*をZの3次方程式としてxを求めよ
この動画を見る 

岐阜大 積分 3次方程式の実数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#不定積分・定積分#岐阜大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3+ax^2-\displaystyle \int_{-2}^{1} x f(t) dt$
$f(x)=0$が異なる3つの実数解をもつ$a$の範囲を求めよ

出典:2013年岐阜大学 過去問
この動画を見る 

福田のおもしろ数学192〜連立方程式と対称式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式
指導講師: 福田次郎
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + y^2 = 1 \\
x^3 + y^3 = 1
\end{array}
\right.
\end{eqnarray}$を解いて下さい。
この動画を見る 

福田の数学〜早稲田大学2021年教育学部第1問〜高次方程式の実数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (1)方程式$x^4+5x^3-3x^2+4x+2=0$ は複素数$\displaystyle \frac{1+\sqrt3i}{2}$を解に持つ。
この方程式の実数解を全て求めよ。

2021早稲田大学教育学部過去問
この動画を見る 

【高校数学】 数Ⅱ-46 高次方程式①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の方程式を解こう。

①$(x-2)(2x+1)=0$

②$(x+4)(x-3)(3x-2)=0$

③$(x^2-1)(x^2-16)=0$

④$x^4=81$
この動画を見る 
PAGE TOP