問題文全文(内容文):
$ Z=\cos\dfrac{2}{5}\pi+i\sin\dfrac{2}{5}\pi,w=Z+Z^3$とするとき,
①$w+\bar{w}$
②$w・\bar{w}$
の値を求めよ.
昭和大(医)過去問
$ Z=\cos\dfrac{2}{5}\pi+i\sin\dfrac{2}{5}\pi,w=Z+Z^3$とするとき,
①$w+\bar{w}$
②$w・\bar{w}$
の値を求めよ.
昭和大(医)過去問
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$ Z=\cos\dfrac{2}{5}\pi+i\sin\dfrac{2}{5}\pi,w=Z+Z^3$とするとき,
①$w+\bar{w}$
②$w・\bar{w}$
の値を求めよ.
昭和大(医)過去問
$ Z=\cos\dfrac{2}{5}\pi+i\sin\dfrac{2}{5}\pi,w=Z+Z^3$とするとき,
①$w+\bar{w}$
②$w・\bar{w}$
の値を求めよ.
昭和大(医)過去問
投稿日:2023.02.12