【高校数学】2次関数の平行移動例題~基礎問題3選~ 2-2.5【数学Ⅰ】 - 質問解決D.B.(データベース)

【高校数学】2次関数の平行移動例題~基礎問題3選~ 2-2.5【数学Ⅰ】

問題文全文(内容文):
1⃣
放物線$y=x^2+2x+2$はどのように平行移動すると、放物線$y=x^2-4x+1$に重なるか

-----------------

2⃣
放物線$y=x^2-2x+3$を$x$軸方向に2、$y$軸方向に-3だけ平行移動して得られる放物線の方程式を求めよ

-----------------

3⃣
ある放物線Cを$x$軸方向2、$y$軸方向に1だけ平行移動すると放物線$y=2x^2-3x+4$になった。
放物線Cを求めよ
チャプター:

00:00 はじまり

00:17 問題だよ

00:37 問題解説(1)

03:02 問題解説(2)

04:33 問題解説(3)

06:00 問題解説別解(3)

07:55 まとめ

08:22 問題と解説

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
放物線$y=x^2+2x+2$はどのように平行移動すると、放物線$y=x^2-4x+1$に重なるか

-----------------

2⃣
放物線$y=x^2-2x+3$を$x$軸方向に2、$y$軸方向に-3だけ平行移動して得られる放物線の方程式を求めよ

-----------------

3⃣
ある放物線Cを$x$軸方向2、$y$軸方向に1だけ平行移動すると放物線$y=2x^2-3x+4$になった。
放物線Cを求めよ
投稿日:2020.09.30

<関連動画>

数学「大学入試良問集」【6−6 外接球と四面体】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#内心・外心・重心とチェバ・メネラウス#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$AB=5,BC=7,CA=8$および$OA=OB=OC=t$を満たす四面体$OABC$がある。
(1)$\angle BAC$を求めよ。
(2)$\triangle ABC$の外接円の半径を求めよ。
(3)4つの頂点$O,A,B,C$が同一球面上にあるとき、その球の半径が最小となるような実数$t$の値を求めよ。
この動画を見る 

この因数分解できますか?

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
因数分解しなさい。
$ab(a+b)+bc(b+c)+ca(c+a)+2abc$
この動画を見る 

ポイントは実数 摂南大

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2-6xy+10y^2-6y+9=0$
のときの$x,y$を求めよ。
$(ただしx,yは実数)$
この動画を見る 

等式の変形だけど実は2次〇〇○

アイキャッチ画像
単元: #数Ⅰ#数と式#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x=?$ $(a+b \neq 0)$
$\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$
この動画を見る 

福田の一夜漬け数学〜2次関数の最大最小(2)軸の動く最大最小〜高校1年生

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$y=x^2-4ax (0 \leqq x \leqq 2)$の最小値$m(a)$を求めよ。


$y=x^2-4ax (0 \leqq x \leqq 2)$の最大値$M(a)$を求めよ。


$y=M(a),y=m(a)$のグラフを描け。
$M(a)=\begin{eqnarray}
\left\{
\begin{array}{l}
4-8a (a \lt \frac{1}{2}) \\
0 (a \geqq \frac{1}{2})
\end{array}
\right.
\end{eqnarray}$


$m(a)=\begin{eqnarray}
\left\{
\begin{array}{l}
0 (a \lt 0) \\
-4a^2 (0 \leqq a \leqq 1) \\
4-8a (1 \lt a)
\end{array}
\right.
\end{eqnarray}$


$y=-x^2-ax+a (0 \leqq x \leqq 1)$の最小値$m(a)$を求めよ。
この動画を見る 
PAGE TOP