最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第4問〜整数の性質、循環小数と7進法 - 質問解決D.B.(データベース)

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第4問〜整数の性質、循環小数と7進法

問題文全文(内容文):
${\large第4問}$
(1)$x$を循環小数$2.\dot3\dot6$とする。すなわち

$x=2.363636\cdots$

とする。このとき

$100×x-x=236.\dot3\dot6-2.\dot3\dot6$

であるから、$x$を分数で表すと

$x=\displaystyle \frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$

である。

(2)有理数$y$は、7進法で表すと、二つの数字の並び$ab$が繰り返し現れる循環小数
$2.\dot a\dot b_{(7)}$になるとする。ただし、$a,$ $b$は$0$以上$6$以下の異なる整数である。
このとき
$49×y-y=2ab.\dot a\dot b_{(7)}-2.\dot a\dot b_{(7)}$
であるから

$y=\displaystyle \frac{\boxed{\ \ オカ\ \ }+7×a+b}{\boxed{\ \ キク\ \ }}$

と表せる。
$(\textrm{i})y$が、分子が奇数で分母が$4$である分数で表されるのは
$y=\displaystyle \frac{\boxed{\ \ ケ\ \ }}{4}$ または $y=\displaystyle \frac{\boxed{\ \ コサ\ \ }}{4}$
のときである。$y=\displaystyle \frac{\boxed{\ \ コサ\ \ }}{4}$のときは、$7×a+b=\boxed{\ \ シス\ \ }$であるから
$a=\boxed{\ \ セ\ \ },$ $b=\boxed{\ \ ソ\ \ }$
である。

$(\textrm{ii})y-2$は、分子が$1$で分母が$2$以上の整数である分数で表されるとする。
このような$y$の個数は、全部で$\boxed{\ \ タ\ \ }$個である。

2020センター試験過去問
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第4問}$
(1)$x$を循環小数$2.\dot3\dot6$とする。すなわち

$x=2.363636\cdots$

とする。このとき

$100×x-x=236.\dot3\dot6-2.\dot3\dot6$

であるから、$x$を分数で表すと

$x=\displaystyle \frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウエ\ \ }}$

である。

(2)有理数$y$は、7進法で表すと、二つの数字の並び$ab$が繰り返し現れる循環小数
$2.\dot a\dot b_{(7)}$になるとする。ただし、$a,$ $b$は$0$以上$6$以下の異なる整数である。
このとき
$49×y-y=2ab.\dot a\dot b_{(7)}-2.\dot a\dot b_{(7)}$
であるから

$y=\displaystyle \frac{\boxed{\ \ オカ\ \ }+7×a+b}{\boxed{\ \ キク\ \ }}$

と表せる。
$(\textrm{i})y$が、分子が奇数で分母が$4$である分数で表されるのは
$y=\displaystyle \frac{\boxed{\ \ ケ\ \ }}{4}$ または $y=\displaystyle \frac{\boxed{\ \ コサ\ \ }}{4}$
のときである。$y=\displaystyle \frac{\boxed{\ \ コサ\ \ }}{4}$のときは、$7×a+b=\boxed{\ \ シス\ \ }$であるから
$a=\boxed{\ \ セ\ \ },$ $b=\boxed{\ \ ソ\ \ }$
である。

$(\textrm{ii})y-2$は、分子が$1$で分母が$2$以上の整数である分数で表されるとする。
このような$y$の個数は、全部で$\boxed{\ \ タ\ \ }$個である。

2020センター試験過去問
投稿日:2020.01.22

<関連動画>

【高校数学】テスト直前の高校1年生は必見!因数分解はこの手順で考えると上手くいく!【数学のコツ】

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を因数分解せよ。
(1)$9a^3b+3a^2b^2-3ab^2$
(2)$5a^3-20ab^2$
(3)$10a^2+14ab-12b^2$
(4)$xy-x-y+1$
(5)$ab+bc-cd-da$
(6)$a^2+b^2+2bc+2ca+2ab$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題084〜東北大学2018年度理系第4問〜三角形の内接円と外接円の半径の関係

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#三角比(三角比・拡張・相互関係・単位円)#三角関数#三角関数とグラフ#加法定理とその応用#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 三角形ABCの内接円の半径をr, 外接円の半径をRとし、h=$\frac{r}{R}$とする。
また、$\angle$A=2α, $\angle$B=2β, $\angle$C=2γ とおく。
(1)h=4$\sin\alpha\sin\beta\sin\gamma$となることを示せ。
(2)三角形ABCが直角三角形のときh≦$\sqrt 2-1$が成り立つことを示せ。
また、等号が成り立つのはどのような場合か。
(3)一般の三角形ABCに対してh≦$\frac{1}{2}$が成り立つことを示せ。また等号が成り立つのはどのような場合か。

2018東北大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2024年商学部第1問(4)〜不等式に関する文章題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$
(4)ある業者は、三つの工場A, B, Cから廃棄物を回収し、その中に含まれる三つの金属P, Q, Rを取り出して新たな製品Kを作る。各工場の廃棄物から取り出されるP, Q, Rの量は以下の通りである。
・工場Aの廃棄物10 kgからPが3 kg、Qが5 kg、Rが1 kg取り出される。
・工場Bの廃棄物10 kgからPが1 kg、Qが3 kg、Rが2 kg取り出される。
・工場Cの廃棄物10 kgからPが4 kg、Qが1 kg、Rが1 kg取り出される。
また、Pが2 kgと、Qが2 kgと、Rが1 kgで製品Kが1個作られる。工場A, B, Cから合わせて200 kgの廃棄物が回収できるとき、製品Kをできるだけ多く作るには、工場Aから$\boxed{\ \ ウ\ \ }$ kg、工場Bから$\boxed{\ \ エ\ \ }$ kg、工場Cから$\boxed{\ \ オ\ \ }$ kgの廃棄物を回収すればよく、そのとき製品Kは$\boxed{\ \ カ\ \ }$個作ることができる。
この動画を見る 

数学「大学入試良問集」【6−5 母線の等しい四面体】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#三角比(三角比・拡張・相互関係・単位円)#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
1辺の長さが2の正三角形$ABC$を底面とし、
$OA=OB=OC=2a(a \gt 1)$
である四面体$OABC$について、辺$AB$の中点を$M$とし、頂点$O$から直線$CM$に下した垂線を$OH$とする。
$\angle OMC=\theta$とするとき、次の各問いに答えよ。
(1)$\cos\theta$を$a$を用いて表せ。
(2)$OH$の長さを$a$を用いて表せ。
(3)$OH$の長さが$2\sqrt{ 3 }$になるときの$a$の値を求めよ。
この動画を見る 

大阪大 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2008大阪大学過去問題
αを$x^2-2x-1=0$の解とする。
$(a+5α)(b+5cα)=1$を満たす整数の組(a,b,c)をすべて求めよ。
ただし必要なら$\sqrt2$が無理数であることは証明せずに用いてよい。
この動画を見る 
PAGE TOP