小学生の知識で解ける東大入試問題,整数問題 Japanese university entrance exam questions Tokyo University - 質問解決D.B.(データベース)

小学生の知識で解ける東大入試問題,整数問題 Japanese university entrance exam questions Tokyo University

問題文全文(内容文):
円周上にm個の赤い点とn個の青い点を任意の順序に並べる。これらの点により、円周はm+n個の弧に分けられる。
このとき、これらの弧のうち両端の点の色が異なるものの数は偶数であることを証明せよ。
ただし、$m \geqq 1$,$n \geqq 1$とする。

東大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
円周上にm個の赤い点とn個の青い点を任意の順序に並べる。これらの点により、円周はm+n個の弧に分けられる。
このとき、これらの弧のうち両端の点の色が異なるものの数は偶数であることを証明せよ。
ただし、$m \geqq 1$,$n \geqq 1$とする。

東大過去問
投稿日:2018.03.25

<関連動画>

福田の数学〜慶應義塾大学2022年総合政策学部第2問〜デコボコ数を数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ 10進法で表したときm桁(m \gt 0)である正の整数nの第i桁目(1 \leqq i \leqq m)を\\
m_iとしたとき、i≠jのときn_i≠n_jであり、かつ、次の(\textrm{a})または(\textrm{b})のいずれか\\
が成り立つとき、nを10進法m桁のデコボコ数と呼ぶことにする。\\
(\textrm{a})1 \leqq i \lt mであるiに対して、iが奇数の時n_i \lt n_{i+1}となり、\\
iが偶数の時n_i \gt n_{i+1}となる。\\
(\textrm{b})1 \leqq i \lt mであるiに対して、iが奇数の時n_i \gt n_{i+1}となり、\\
iが偶数の時n_i \lt n_{i+1}となる。\\
例えば、361は(\textrm{a})を満たす10進法3桁のデコボコ数であり、52409は(\textrm{b})を\\
満たす10進法5桁のデコボコ数である。なお、4191は(\textrm{a})を満たすが「i≠jのとき\\
n_i≠n_jである」条件を満たさないため、10進法4桁のデコボコ数ではない。\\
(1)nが10進法2桁の数(10 \leqq n \leqq 99)の場合、n_1≠n_2であれば(\textrm{a})または(\textrm{b})を\\
満たすため、10進法2桁のデコボコ数は\ \boxed{\ \ アイ\ \ }\ 個ある。\\
(2)nが10進法3桁の数(100 \leqq n \leqq 999)の場合、(\textrm{a})を満たすデコボコ数は\\
\boxed{\ \ ウエオ\ \ }個、(\textrm{b})を満たすデコボコ数は\boxed{\ \ カキク\ \ }個あるため、\\
10進法3桁のデコボコ数は合計\boxed{\ \ ケコサ\ \ }個ある。\\
(3)nが10進法4桁の数(1000 \leqq n \leqq 9999)の場合、(\textrm{a})を満たすデコボコ数は\\
\boxed{\ \ シスセソ\ \ }個、(\textrm{b})を満たすデコボコ数は\boxed{\ \ タチツテ\ \ }個あるため、\\
10進法4桁のデコボコ数は合計\boxed{\ \ トナニヌ\ \ }個ある。また10進法4桁のデコボコ数\\
の中で最も大きなものは\boxed{\ \ ネノハヒ\ \ }、最も小さなものは\boxed{\ \ フヘホマ\ \ }である。\\
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
この動画を見る 

京都大学入試問題 3次方程式が整数解を持たない時、解は無理数であることの証明 高校数学

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
方程式$x^3+x-8=0$は
(1)ただ1つの実根を1と2との間にもつことを示せ。

(2)この根は無理数であることを証明せよ。

京大過去問
この動画を見る 

【高校数学】「これ」知ってる? フェルマーが愛した無限降下法という証明方法 #Shorts

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\sqrt3 $が無理数であることを証明せよ。
この動画を見る 

整数問題【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x$は0でない実数とする。$x-\dfrac{1}{x}$が0以外の整数ならば$x^2-\dfrac{1}{x^2}$は整数でないことを示せ。

一橋大過去問
この動画を見る 

関数と図形 東工大附属(改) B

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数A#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
面積6等分
Cの座標は?
*図は動画内参照

2021東京工業大学附属科学技術高等学校
この動画を見る 
PAGE TOP