問題文全文(内容文):
a,b,cは正の実数とする.
$a+b+c=\sqrt{10+\sqrt{19}}$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\sqrt{10-\sqrt{19}}$
$a^2+b^2+c^2=?$
これを求めよ.
a,b,cは正の実数とする.
$a+b+c=\sqrt{10+\sqrt{19}}$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\sqrt{10-\sqrt{19}}$
$a^2+b^2+c^2=?$
これを求めよ.
単元:
#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
a,b,cは正の実数とする.
$a+b+c=\sqrt{10+\sqrt{19}}$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\sqrt{10-\sqrt{19}}$
$a^2+b^2+c^2=?$
これを求めよ.
a,b,cは正の実数とする.
$a+b+c=\sqrt{10+\sqrt{19}}$
$\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\sqrt{10-\sqrt{19}}$
$a^2+b^2+c^2=?$
これを求めよ.
投稿日:2022.11.20