福田の一夜漬け数学〜図形と方程式〜直線の方程式(1)平行・垂直条件、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜直線の方程式(1)平行・垂直条件、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 点$(2,-3)$を通り、直線$3x-4y+1=0$ に平行な直線と垂直な直線の
方程式を求めよ。

${\Large\boxed{2}}$ $2$直線$ax-y-a+1=0$ $\cdots$① $(a+2)x-ay+2a=0$ $\cdots$②
が次の条件を満たすとき、定数$a$の値を求めよ。
(1)平行である  (2)垂直である
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$(2,-3)$を通り、直線$3x-4y+1=0$ に平行な直線と垂直な直線の
方程式を求めよ。

${\Large\boxed{2}}$ $2$直線$ax-y-a+1=0$ $\cdots$① $(a+2)x-ay+2a=0$ $\cdots$②
が次の条件を満たすとき、定数$a$の値を求めよ。
(1)平行である  (2)垂直である
投稿日:2018.07.16

<関連動画>

よく出る問題!放物線と直線が接するということは?【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
放物線$y=ax^2+bx+c$が3直線$y=x,y=2x-1,y=3x-3$のすべてと接するとき、$a,b,c$の値を求めよ。

京都大過去問
この動画を見る 

難関高校受験生必見!!放物線と比

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=x^2$ $\quad$ $y=\frac{1}{4}x^2$
a:b=?

*図は動画内参照
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(4)直線群と2次方程式の解、高校2年生

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#2次関数とグラフ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 2直線4x+3y+2=0 \cdots①, 5x-2y-3=0 \cdots②の交点を通り、\\
点A(-1,2)を通る直線の方程式を求めよ。\\
\\
{\Large\boxed{2}} 2次方程式x^2-ax-2a-1=0 について次の条件を満たすaの範囲を定めよ。\\
(1)-1 \lt x \lt 2 の範囲に異なる2つの実数解をもつ。\\
(2)少なくとも1つ-1 \lt x \lt 2 の範囲に実数解をもつ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生053〜領域(8)領域と最大最小(4)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(8) 領域と最大最小(4)\\
2x+3y \geqq 9, 4x+y \leqq18, y \leqq 2のとき、\\
x^2+y^2\\
の最大値、最小値を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜神戸大学2022年理系第4問〜双曲線が直線から切り取る弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#点と直線#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ aを正の実数とし、双曲線\frac{x^2}{4}-\frac{y^2}{4}=1と直線y=\sqrt ax+\sqrt aが異なる2点P,Q\\
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。\\
(1)aの取りうる値の範囲を求めよ。\\
(2)s,tの値をaを用いて表せ。\\
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。\\
(4)tの値をsを用いて表せ。
\end{eqnarray}

2022神戸大学理系過去問
この動画を見る 
PAGE TOP