問題文全文(内容文):
$P(x),Q(x)$はxの実数係数多項式である.
$P(x),Q(x)$が$x^2+1$で割り切れるなら$P(x),Q(x)$の少なくとも一方は$x^2+1$で割り切れることを証明せよ.
(1)$P(i)=0$ならば$P(x)$は$x^2+1$で割り切れることを示せ.
宮城教育大過去問
$P(x),Q(x)$はxの実数係数多項式である.
$P(x),Q(x)$が$x^2+1$で割り切れるなら$P(x),Q(x)$の少なくとも一方は$x^2+1$で割り切れることを証明せよ.
(1)$P(i)=0$ならば$P(x)$は$x^2+1$で割り切れることを示せ.
宮城教育大過去問
単元:
#数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$P(x),Q(x)$はxの実数係数多項式である.
$P(x),Q(x)$が$x^2+1$で割り切れるなら$P(x),Q(x)$の少なくとも一方は$x^2+1$で割り切れることを証明せよ.
(1)$P(i)=0$ならば$P(x)$は$x^2+1$で割り切れることを示せ.
宮城教育大過去問
$P(x),Q(x)$はxの実数係数多項式である.
$P(x),Q(x)$が$x^2+1$で割り切れるなら$P(x),Q(x)$の少なくとも一方は$x^2+1$で割り切れることを証明せよ.
(1)$P(i)=0$ならば$P(x)$は$x^2+1$で割り切れることを示せ.
宮城教育大過去問
投稿日:2022.10.08