【高校数学】等差数列の和の例題演習・標準 3-4.5【数学B】 - 質問解決D.B.(データベース)

【高校数学】等差数列の和の例題演習・標準 3-4.5【数学B】

問題文全文(内容文):
1⃣
等差数列において、初項から第n項までの和を$S_{n}$とする。
$S_{10}=10,S_{20}=40$のとき、$S_{n}$を求めよ。

2⃣
10から100までの自然数のうち3で割って2余る数の和$S$を求めよ
チャプター:

00:00 はじまり

00:22 問題

00:36 問題解説(1)

05:22 問題解説(2)

10:04 まとめ

10:35 問題と答え

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
等差数列において、初項から第n項までの和を$S_{n}$とする。
$S_{10}=10,S_{20}=40$のとき、$S_{n}$を求めよ。

2⃣
10から100までの自然数のうち3で割って2余る数の和$S$を求めよ
投稿日:2021.08.09

<関連動画>

【数B】数列:漸化式の基本を解説シリーズその4 特殊解型

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1}+2a_{n}=1$で定められる数列{$a_n$}の一般項を求めよ。
この動画を見る 

3つの解法・漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=8$
$a_{n+1}=3a_n+4^n$
これを解け.
この動画を見る 

2023昭和大(医)漸化式の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#昭和大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=4$
$\displaystyle \sum_{k=1}^{n+1} a_k=4,a_n+8$
一般項$a_n$を求めよ.

昭和大(医)過去問
この動画を見る 

【数B】数列:nを自然数とするとき、4^(n+1)+9^nは5の倍数であることを、数学的帰納法を用いて証明せよ。

アイキャッチ画像
単元: #数列#数学的帰納法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
nを自然数とするとき、$4^(n+1)+9^n$は5の倍数であることを、数学的帰納法を用いて証明せよ。
この動画を見る 

山梨大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$
$a_{n+1}=2^{n^2-25n-12}a_{n}$

(1)
一般項を求めよ

(2)
$a_{n} \gt 1$となる最小の$n$

出典:山梨大学 過去問
この動画を見る 
PAGE TOP