整数問題 - 質問解決D.B.(データベース)

整数問題

問題文全文(内容文):
n2+3,n2+7,n2+13,n2+19のすべてが素数となる整数nをすべて求めよ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
n2+3,n2+7,n2+13,n2+19のすべてが素数となる整数nをすべて求めよ.
投稿日:2022.08.08

<関連動画>

モスクワ数学オリンピック 整数

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは自然数とするとき,
1!+2!+3!++x!=y2を求めよ.

モスクワ数学オリンピック過去問
この動画を見る 

ラ・サール高校の整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,b,c,dは0または正の整数。
{ad+bc=2a+b+c+d=4
を満たす(a,b,c,d)の組はいくつか?

ラ・サール学園
この動画を見る 

整数問題!問題文でかなり範囲が絞られている!?さらに候補を絞り込もう!【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nを2以上20以下の整数、kを1以上n-1以下の整数とする。

n+1Ck+12(nCk1nCk1)

が成り立つような整数の組(n,k)を求めよ。

一橋大過去問
この動画を見る 

【高校数学】「これ」知ってる? フェルマーが愛した無限降下法という証明方法 #Shorts

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
3が無理数であることを証明せよ。
この動画を見る 

高校入試だけどもガウス記号 大阪星光学院

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
記号[x]はxを超えない最大の整数。
[(x12)2]=x2+3のときx=?

大阪星光学院高等学校
この動画を見る 
PAGE TOP preload imagepreload image