和歌山大 4次関数と接線 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

和歌山大 4次関数と接線 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
94年 和歌山大学過去問
$f(x)=x^4+ax^3+bx^2+cx+d$と$y=mx$は2点P、Qで接している。
P、Qの$x$座標はそれぞれ、-1、2で$f(x)$は$x=1$で極大値をとる。

(1)$f(x)$と$y=mx$で囲まれる面積を求めよ

(2)$m$の値と極大値を求めよ
単元: #数Ⅱ#大学入試過去問(数学)#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#岡山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
94年 和歌山大学過去問
$f(x)=x^4+ax^3+bx^2+cx+d$と$y=mx$は2点P、Qで接している。
P、Qの$x$座標はそれぞれ、-1、2で$f(x)$は$x=1$で極大値をとる。

(1)$f(x)$と$y=mx$で囲まれる面積を求めよ

(2)$m$の値と極大値を求めよ
投稿日:2018.12.26

<関連動画>

福田の数学〜絶対落としたくないこの一題!〜慶應義塾大学2023年経済学部第6問〜定積分と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数の定数とする。また、xの関数$f(x)=x^3-ax+b$は
$a=\displaystyle \int_{-1}^{ 1 } \{\dfrac{3}{2}b|x^2+x|-f(x) \} dx$を満たすとする。
(1)bを、aを用いて表せ。
(2)y=f(x)で定まる曲線Cとx軸で囲まれた図形の面積Sを求めよ。なお、必要があれば$\alpha \lt \beta$を満たす実数$\alpha,\beta$に対して成り立つ公式
$a=\displaystyle \int_{\alpha}^{ \beta } (x-\alpha)^2(x-\beta) dx=-\dfrac{1}{12}(\beta-\alpha)^4$
を用いてもよい。

2023慶應義塾大学商学部過去問
この動画を見る 

【数Ⅱ】【微分法と積分法】領域の面積 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を同時に満たす点$(x,y)$の存在する部分の面積を求めよ。
$y\geqq x^2+1,y\geqq x+3,y\leqq x+7$
この動画を見る 

福田の数学〜筑波大学2023年理系第1問〜3次関数の接線と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#平均変化率・極限・導関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 曲線C:$y$=$x$-$x^3$上の点A(1, 0)における接線を$l$とし、Cと$l$の共有点のうちAとは異なる点をBとする。また、-2<$t$<1とし、C上の点P($t$, $t$-$t^3$)をとる。さらに、三角形ABPの面積を$S(t)$とする。
(1)点Bの座標を求めよ。
(2)$S(t)$を求めよ。
(3)$t$が-2<$t$<1の範囲を動くとき、$S(t)$の最大値を求めよ。

2023筑波大学理系過去問
この動画を見る 

名古屋大 積分 面積公式の証明 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
名古屋大学過去問題
$C:y=x^3-3x^2+2x$
原点を通り、原点以外でCと接する直線l
lとCで囲まれた部分の面積
この動画を見る 

数学基礎40「積分と面積公式」【高校数学ⅡB】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
積分と面積公式の解説動画です
この動画を見る 
PAGE TOP