福田の数学〜慶應義塾大学2021年総合政策学部第4問〜円と放物線が接するときの囲まれた面積 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2021年総合政策学部第4問〜円と放物線が接するときの囲まれた面積

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} aを正の実数、bを1より大きい実数としたとき、放物線y=-ax^2+bが、\\
下図(※動画参照)のように原点を中心とした半径1の円x^2+y^2=1と2箇所で\\
接している。(すなわち共有点において共通の接線を持つ)\\
\\
(1)一般に、b=\frac{\boxed{\ \ アイ\ \ }a^2+\boxed{\ \ ウエ\ \ }a+\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }a+\boxed{\ \ ケコ\ \ }}\ である。\\
\\
(2)特に、a=\frac{\sqrt2}{2}とすると、放物線と円の接点は\\
(±\frac{\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }},\ \frac{\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }})\\
であり、円と放物線に囲まれた上図の斜線部の面積は\\
\frac{\boxed{\ \ テト\ \ }+\boxed{\ \ ナニ\ \ }\pi}{\boxed{\ \ ヌネ\ \ }}\ となる。
\end{eqnarray}
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}} aを正の実数、bを1より大きい実数としたとき、放物線y=-ax^2+bが、\\
下図(※動画参照)のように原点を中心とした半径1の円x^2+y^2=1と2箇所で\\
接している。(すなわち共有点において共通の接線を持つ)\\
\\
(1)一般に、b=\frac{\boxed{\ \ アイ\ \ }a^2+\boxed{\ \ ウエ\ \ }a+\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }a+\boxed{\ \ ケコ\ \ }}\ である。\\
\\
(2)特に、a=\frac{\sqrt2}{2}とすると、放物線と円の接点は\\
(±\frac{\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }},\ \frac{\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }})\\
であり、円と放物線に囲まれた上図の斜線部の面積は\\
\frac{\boxed{\ \ テト\ \ }+\boxed{\ \ ナニ\ \ }\pi}{\boxed{\ \ ヌネ\ \ }}\ となる。
\end{eqnarray}
投稿日:2021.07.19

<関連動画>

福田の数学〜慶應義塾大学2022年経済学部第6問〜定積分で表された関数と面積の2等分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}}\ 関数F(x)=\frac{1}{2}+\int_0^{x+1}(|t-1|-1)dtに対し、\\
y=F(x)で定まる曲線をCとする。\\
(1)F(x)を求めよ。\\
(2)Cとx軸の共有点のうち、x座標が最小の点をP、最大の点をQ\\
とする。PにおけるCの接線をlとするとき、Cとlで囲まれた図形の面積Sを求めよ。\\
また、Qを通る直線mがSを2等分するとき、lとmの交点Rの座標を求めよ。
\end{eqnarray}
この動画を見る 

福田の数学〜名古屋大学2022年文系第3問〜放物線と放物線で囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ a,bを実数とし、放物線y=\frac{1}{2}x^2をC_1、放物線y=-(x-a)^2+bをC_2とする。\\
(1)C_1とC_2が異なる2点で交わるためのa,bの条件を求めよ。\\
以下、C_1とC_2は異なる2点で交わるとし、C_1とC_2で囲まれた図形の面積をSとする。\\
(2)S=16となるためのa,bの条件を求めよ。\\
(3)a,bはb \leqq a+3を満たすとする。このときSの最大値を求めよ。
\end{eqnarray}
この動画を見る 

【積分】積分がなぜ面積を求められるのかについて解説しました!【数学III】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
積分の原理を解説します。
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第6問〜3次関数の接線と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{6}} F(x)は実数を係数とするxの3次式で、x^3の項の係数は1であり、y=F(x)で\\
定まる曲線をCとする。\alpha \lt \betaを満たす実数\alpha,\ \betaに対して、C上の点A(\alpha,F(\alpha))\\
におけるCの接線をL_{\alpha}とするとき、CとL_{\alpha}とのA以外の共有点がB(\beta,F(\beta))\\
であるとする。さらに、BにおけるCの接線をL_{\beta}とのB以外の共有点を(\gamma,F(\gamma))\\
とする。\\
\\
(1)接線L_{\alpha}の方程式をy=l_{\alpha}(x)とし、G(x)=F(x)-l_{\alpha}(x)とおく。さらに、\\
曲線y=G(x)上の点(\beta,G(\beta))における接線の方程式をy=m(x)とする。G(x)\\
およびm(x)を、それぞれ\alpha,\betaを用いて因数分解された形に表せ。必要ならば\\
xの整式で表される関数p(x),q(x)とそれらの導関数に関して成り立つ公式\\
\left\{p(x)q(x)\right\}'=p'(x)q(x)+p(x)q'(x)\\
を用いてもよい。\\
\\
(2)接線L_{\beta}の方程式は(1)で定めたl_{\alpha}(x),\ m(x)を用いて、y=l_{\alpha}(x)+ m(x)で\\
与えられることを示せ。さらに、\gammaを\alpha,\betaを用いて表せ。\\
\\
(3)曲線CおよびL_{\beta}で囲まれた図形の面積をSとする。Sを\alpha,\betaを用いて表せ。\\
さらに\alpha,\betaが-1 \lt \alpha \lt 0かつ1 \lt \beta \lt 2を満たすとき、Sの取り得る値の\\
範囲を求めよ。必要ならばr \lt sを満たす実数r,sに対して成り立つ公式\\
\int_r^s(x-r)(x-s)^2dx=\frac{1}{12}(s-r)^4\\
を用いてもよい。
\end{eqnarray}
この動画を見る 

福田の数学〜京都大学2022年文系第3問〜放物線と直交する2接線で囲まれる面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ xy平面上の2直線L_1,L_2は直交し、交点のx座標は\frac{3}{2}である。\\
また、L_1,L_2は共に曲線C:y=\frac{x^2}{4}に接している。このとき、L_1,L_2およびCで\\
囲まれる図形の面積を求めよ。
\end{eqnarray}
この動画を見る 
PAGE TOP