久留米(医) 5倍角 Japanese university entrance exam questions - 質問解決D.B.(データベース)

久留米(医) 5倍角 Japanese university entrance exam questions

問題文全文(内容文):
久留米大学過去問題
$0 \leqq x<\frac{\pi}{2}$
$f(x)=cos5x+9cos3x-10cosx$
f(x)の最小値を求めよ。
単元: #数Ⅱ#三角関数#微分法と積分法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
久留米大学過去問題
$0 \leqq x<\frac{\pi}{2}$
$f(x)=cos5x+9cos3x-10cosx$
f(x)の最小値を求めよ。
投稿日:2018.06.27

<関連動画>

福田の数学〜杏林大学2022年医学部第1問〜三角関数の最大最小と極値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#微分法と積分法#加法定理とその応用#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学
指導講師: 福田次郎
問題文全文(内容文):
(1)三角関数について、次の等式が成り立つ。
$\cos2θ=\boxed{アイ}\sin^2θ+\boxed{ウ}$
$\sin3θ=\boxed{エオ}\sin^3θ+\boxed{カ}\sinθ$
(2)$0 \leqq θ \lt 2\pi$のとき、関数
$y=-\frac{1}{12}\sin3θ+\frac{3}{8}\cos2θ-\frac{3}{4}\sinθ$
は$θ=\frac{\boxed{キ}}{\boxed{ク}}\pi$で最小値$\frac{\boxed{ケコサ}}{\boxed{シス}}$をとり、
$\sinθ=\frac{\boxed{セソ}}{\boxed{タ}}$のとき最大値$\frac{\boxed{チツ}}{\boxed{テト}}$
をとる。また、yの極致を与えるθの個数は$\boxed{ナ}$である。

2022杏林大学医学部過去問
この動画を見る 

【数学】中高一貫校用問題集数式・関数編:分数式を含む方程式の解法

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の方程式を解け。
(1)$\displaystyle \frac{x}{x^2-7x+10} -\frac{10}{x^2-5x} =\frac{2}{x}$
(2)$\displaystyle \frac{x}{x^2+3x+2} =\frac{2}{x+2} -1$
この動画を見る 

福田の数学〜一橋大学2022年文系第4問〜立方体の内部の点と結んだ線分の通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ tを実数とし、座標空間に点A(t-1,t,t+1)をとる。また、(0,0,0),(1,0,0),\\
(0,1,0),(1,1,0),(0,0,1),(1,0,1),(0,1,1),(1,1,1)を頂点とする立方体を\\
Dとする。点PがDの内部及びすべての面上を動くとき、線分APの動く範囲を\\
Wとし、Wの体積をf(t)とする。\\
(1)f(-1)を求めよ。\\
(2)f(t)のグラフを描き、f(t)の最小値を求めよ。
\end{eqnarray}

2022一橋大学文系過去問
この動画を見る 

#高専#不定積分_14#元高専教員

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x-1}{\sqrt{ x }+1}dx$
この動画を見る 

指数の計算

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{2024} -2^{2023} = 2^{?}$
この動画を見る 
PAGE TOP