2次方程式の因数分解や解の公式が不要な新しい解き方の証明 - 質問解決D.B.(データベース)

2次方程式の因数分解や解の公式が不要な新しい解き方の証明

問題文全文(内容文):
2次方程式の因数分解や解の公式が不要な新しい解き方の証明
チャプター:

00:00 はじまり

01:02 証明開始

07:02 まとめ

07:41 まとめノート

単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2次方程式の因数分解や解の公式が不要な新しい解き方の証明
投稿日:2022.05.13

<関連動画>

【高校数学】 数Ⅱー48 高次方程式③

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎1の3乗根の1つである$\displaystyle \frac{-1+\sqrt{ 3 }i}{2}$を$w$とするとき、次の式の値を求めよう。

①$w^2$

②$w^3$

③$w^2+w+1$

④$w^4+w^5$

⑤$w^{12}$
この動画を見る 

佐賀大(医)3次方程式の解の公式その2

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+px-q=0$
$\alpha-\beta=q,\alpha\beta=\left(\dfrac{p}{3}\right)^3$
$\sqrt[3]{\alpha}-\sqrt[3]{\beta}$は解である.
$\sqrt[3]{1+\sqrt{\dfrac{28}{27}}}-\sqrt[3]{-1+\sqrt{\dfrac{28}{27}}}$の値を求めよ.

佐賀大(医)過去問
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第1問(4)〜対数方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)($\log_29$)($\log_3x$)-$\log_25$=2 を解くとx=$\boxed{\ \ キ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

福田の数学〜一橋大学2024年文系第3問〜多項式の商と余り

アイキャッチ画像
単元: #数Ⅱ#剰余の定理・因数定理・組み立て除法と高次方程式#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $f(x)$は$x$に関する4次方程式で4次の係数は1である。$f(x)$は$(x+1)^2$で割ると1余り、$(x-1)^2$で割ると2余る。$f(x)$を求めよ。
この動画を見る 

京都大 3次方程式 実数解1つである証明 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)$は3次式、$f(x)$を導関数$f'(x)$で割った余りが定数である。
$f(x)=0$はただ1つの実数解をもつことを示せ

出典:1989年京都大学 過去問
この動画を見る 
PAGE TOP