連立3元4次方程式 - 質問解決D.B.(データベース)

連立3元4次方程式

問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2y^2+x^2+y^2=49 \\
y^2z^2+y^2+z^2=169\\
z^2x^2+z^2+x^2=84 \\
\end{array}
\right.
\end{eqnarray}$
これを解け.
単元: #連立方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2y^2+x^2+y^2=49 \\
y^2z^2+y^2+z^2=169\\
z^2x^2+z^2+x^2=84 \\
\end{array}
\right.
\end{eqnarray}$
これを解け.
投稿日:2022.05.10

<関連動画>

高等学校入学試験予想問題:明治学院高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#空間図形#1次関数#2次関数#円#平面図形
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$

(1)$ 9xy^2\div \left(-\dfrac{3}{2}xy\right)^3\times \dfrac{3}{4}x^4y$を計算せよ.
(2)$ \begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{3}{4}x+\dfrac{y}{2}=1 \\
2x-3y=1
\end{array}
\right.
\end{eqnarray}$ を解け.
(3)図の円$ O $において,$ \angle x $の大きさを求めよ.

$ \boxed{2}$

放物線$ y=x^2 $上に5点$ A,B,C,D,E $があり,それぞれのx座標は,$ a,-5,-2,2,4 $である.(ただし,$ a\lt -5 $)
さらに,線分$ CE $の中点$ F $は直線$ AD $上にあるとき,あとの問いに答えよ.
(1)点$ F $の座標を求めよ.
(2)$ a $の値を求めよ.
(3)$ \triangle ABD $と$ \triangle AED $の面積の比の最も簡単な整数の比で表せ.

$ \boxed{3}$

図のように,直方体$ ABCD-EFGH $があり,$ AB=3,AD=6,AE=2$である.
点$G$からこの直方体の対角線$CE$に垂線を引き,その交点を$P$とする.
このとき,次の各問いに答えよ.
(1)線分$ GP $の長さを求めよ.
(2)三角錐$ P-GEF$の体積を求めよ.
(3)辺$ AD $の中点を$Q$とし,辺$FG$上に$FR=2$となる点$R$をとる.
3点$B,Q,R $を通る平面と線分$EG$の交点を$S$とするとき,三角錐$P-GSR $の体積を求めよ.
この動画を見る 

ビッグマックに連立方程式当てはめてみた

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ビッグマックに連立方程式当てはめてみた
この動画を見る 

【函数はブラック・ボックス…!】関数:熊本県~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
ある数xを、アに当てはめると、ウの数はyとなった
さらに、yをアに当てはめると、ウの数は2となった
※図は動画内参照
x,yの値を求めなさい。
この動画を見る 

中2数学「連立方程式の文章題④(度数分布表の問題)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~連立方程式の文章題④~

例題
次の表は、あるクラス40人の通学時間を度数分布表で 整理したものです。
この表から求めた平均値がちょうど20分のとき、x、yの値を求めよ。
この動画を見る 

【少しでも上手く…!】連立方程式:慶応義塾高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#連立方程式#高校入試過去問(数学)#慶應義塾高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$
\left\{
\begin{array}{l}
(a+2)x + (b-1)y = 33 \\
(a-1)x + (2b+1)y = 9
\end{array}
\right.
$
$の解が x = 3,y = 1であるとき、a = \boxed{ } , b = \boxed{ }である$
この動画を見る 
PAGE TOP