問題文全文(内容文):
次の漸化式を解け。(すべて$a_1=1$とする)
①$a_{n+1}=\displaystyle \frac{a_n}{4a_n-1}$
②$a_{n+1}=2\displaystyle \sqrt{a_n}$
③$a_{n+1}=2(n+1)a_n$
④$a_{n+1}=\displaystyle \frac{4a_n+8}{a_n+6}$
次の漸化式を解け。(すべて$a_1=1$とする)
①$a_{n+1}=\displaystyle \frac{a_n}{4a_n-1}$
②$a_{n+1}=2\displaystyle \sqrt{a_n}$
③$a_{n+1}=2(n+1)a_n$
④$a_{n+1}=\displaystyle \frac{4a_n+8}{a_n+6}$
単元:
#数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
次の漸化式を解け。(すべて$a_1=1$とする)
①$a_{n+1}=\displaystyle \frac{a_n}{4a_n-1}$
②$a_{n+1}=2\displaystyle \sqrt{a_n}$
③$a_{n+1}=2(n+1)a_n$
④$a_{n+1}=\displaystyle \frac{4a_n+8}{a_n+6}$
次の漸化式を解け。(すべて$a_1=1$とする)
①$a_{n+1}=\displaystyle \frac{a_n}{4a_n-1}$
②$a_{n+1}=2\displaystyle \sqrt{a_n}$
③$a_{n+1}=2(n+1)a_n$
④$a_{n+1}=\displaystyle \frac{4a_n+8}{a_n+6}$
投稿日:2018.05.10