【数Ⅱ】「少なくとも1つが1」「すべてが1」を等式で証明する。【主張を言い換える】 - 質問解決D.B.(データベース)

【数Ⅱ】「少なくとも1つが1」「すべてが1」を等式で証明する。【主張を言い換える】

問題文全文(内容文):
$ a+b+c=1,ab+bc+ca=abcが成り立つとき,
a,b,cのうち少なくとも1つは1であることを示せ.$
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ a+b+c=1,ab+bc+ca=abcが成り立つとき,
a,b,cのうち少なくとも1つは1であることを示せ.$
投稿日:2021.11.15

<関連動画>

kとk+1ということは・・・【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
nとkを自然数とし、整数$x^{n}$を整数(x-k)(x-k-1)で割ったあまりをax+bとする。
(1)aとbは整数であることを示せ
(2)aとbをともに割り切る素数は存在しないことを示せ

京都大過去問
この動画を見る 

【数Ⅱ】二項定理・多項定理の導出と使い方【ストーリーがわかれば暗記不要!】

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
二項定理・多項定理の導出と使い方に関して解説していきます.
この動画を見る 

分数の中に分数

アイキャッチ画像
単元: #数Ⅱ#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{\frac{3}{4}}{\frac{5}{6}}$
この動画を見る 

【高校数学】二項定理が完璧になる授業~数学苦手必見~ 1-2【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$(x-7y)^7$の展開式における$x^4y^3$の項の係数を求めよ
${}_{ 7 } C_{ 3x^4 }(-2y)^3=-280x^4y^3$
係数:-280
この動画を見る 

福田の数学〜九州大学2022年理系第4問〜定積分の定義から性質を証明する

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{4}}\ 定積分について述べた次の文章を読んで、後の問いに答えよ。\\
区間a \leqq x \leqq bで連続な関数f(x)に対してF'(x)=f(x)となるF(x)を1つ選び、\\
f(x)のaからbまでの定積分を\\
\int_a^bf(x)dx=F(b)-F(a)         \ldots①\\
で定義する。定積分の値はF(x)の選び方によらずに定まる。\\
定積分は次の性質(A),(B),(C)をもつ。\\
(A)\int_a^b\left\{kf(x)+lg(x)\right\}dx=k\int_a^bf(x)dx+l\int_a^bg(x)dx\\
(B) a \leqq c \leqq bのとき、\int_a^cf(x)dx+\int_c^bf(x)dx=\int_a^bf(x)dx\\
(C)区間a \leqq x \leqq bにおいてg(x) \geqq h(x)ならば、\int_a^bg(x)dx \geqq \int_a^bh(x)dx\\
ただし、f(x),g(x),h(x)は区間a \leqq x \leqq bで連続な関数、k,lは定数である。\\
以下、f(x)を区間0 \leqq x \leqq 1で連続な増加関数とし、\\
nを自然数とする。定積分の性質\boxed{\ \ ア\ \ }を用い、定数関数に対する定積分の計算を行うと、\\
\frac{1}{n}f(\frac{i-1}{n}) \leqq \int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx \leqq \frac{1}{n}f(\frac{i}{n})  (i = 1,2,\ldots,n)     \ldots②\\
が成り立つことがわかる。S_n=\frac{1}{n}\sum_{i=1}^nf(\frac{i-1}{n})とおくと、\\
不等式②と定積分の性質\boxed{\ \ イ\ \ }より次の不等式が成り立つ。\\
0 \leqq \int_0^1f(x)dx-S_n \leqq \frac{f(1)-f(0)}{n}     \ldots③\\
よって、はさみうちの原理より\lim_{n \to \infty}S_n=\int_0^1f(x)dxが成り立つ。\\
\\
\\
(1)関数F(x),G(x)が微分可能であるとき、\left\{F(x)+G(x)\right\}'=F'(x)+G'(x)が\\
成り立つことを、導関数の定義に従って示せ。\\
また、この等式と定積分の定義①を用いて、性質(A)でk=l=1とした場合の等式\\
\int_a^b\left\{f(x)+g(x)\right\}dx=\int_a^bf(x)dx+\int_a^bg(x)dx を示せ。\\
(2)定積分の定義①と平均値の定理を用いて、次を示せ。\\
a \lt bのとき、区間a \leqq x \leqq bにおいてg(x) \gt 0ならば、\int_a^bg(x)dx \gt 0\\
(3)(A),(B),(C)のうち、空欄\boxed{\ \ ア\ \ }に入る記号として最もふさわしいものを\\
1つ選び答えよ。また、文章中の下線部の内容を詳しく説明することで、\\
不等式②を示せ。\\
(4)(A),(B),(C)のうち、空欄\boxed{\ \ イ\ \ }に入る記号として最もふさわしいものを\\
1つ選び答えよ。また、不等式③を示せ。\\
\end{eqnarray}

2022九州大学理系過去問
この動画を見る 
PAGE TOP