【数Ⅱ】内分の公式・外分の公式を導出から丁寧に【公式を1つだけにする!?】 - 質問解決D.B.(データベース)

【数Ⅱ】内分の公式・外分の公式を導出から丁寧に【公式を1つだけにする!?】

問題文全文(内容文):
$ 数直線上の点A(3),B(6)について,線分ABを3:2に内分する点Pの座標を求めよ.$
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 数直線上の点A(3),B(6)について,線分ABを3:2に内分する点Pの座標を求めよ.$
投稿日:2022.01.31

<関連動画>

福田の一夜漬け数学〜図形と方程式〜直線の方程式(1)平行・垂直条件、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 点$(2,-3)$を通り、直線$3x-4y+1=0$ に平行な直線と垂直な直線の
方程式を求めよ。

${\Large\boxed{2}}$ $2$直線$ax-y-a+1=0$ $\cdots$① $(a+2)x-ay+2a=0$ $\cdots$②
が次の条件を満たすとき、定数$a$の値を求めよ。
(1)平行である  (2)垂直である
この動画を見る 

福田の一夜漬け数学〜折れ線の最小(1)〜受験編

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 平面上に2点$A(-2,2),B(2,6)$がある。直線$l:y=2x$上の動点$P$で
$AP+PB$が最小となるような点$P$の座標とその最小値を求めよ。

${\Large\boxed{2}}$ 平面上に2点$A(7,2),B(2,8)$がある。$x$軸上の動点$P$、$y$軸上の
動点$Q$で、$AP+PQ+QB$が最小となる点$P$、$Q$の座標とそのときの
最小値を求めよ。
この動画を見る 

福田の数学〜立教大学2023年経済学部第3問〜放物線と直線で囲まれた図形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#面積、体積#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ pを正の実数とする。Oを原点とする座標平面上の放物線C:$y$=$\frac{1}{4}x^2$上の点P$\left(p, \frac{1}{4}p^2\right)$における接線を$l$、Pを通り$x$軸に垂直な直線を$m$とする。また、$m$上の点Q$\left(p, -1\right)$を通り$l$に垂直な直線を$n$とし、$l$と$n$の交点をRとする。さらに、$l$に関してQと対称な点をSとする。このとき、次の問いに答えよ。
(1)$l$の方程式を$p$を用いて表せ。
(2)$n$の方程式およびRの座標をそれぞれ$p$を用いて表せ。
(3)Sの座標を求めよ。
(4)$l$を対象軸として、$l$に関して$m$と対称な直線$m'$の方程式を$p$を用いて表せ。
また、$m'$とCの交点のうちPと異なる点をTとするとき、Tの$x$座標を$p$を用いて表せ。
(5)(4)のTに対して、線分ST、線分OSおよびCで囲まれた部分の面積を$p$を用いて表せ。
この動画を見る 

大阪大 点と直線の距離 公式証明

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x_0,y_0)$と$ax+by+c=0$の距離が$\dfrac{\vert ax_0+by_0+c \vert}{\sqrt{a^2+b^2}}$であることを証明せよ.

大阪大過去問
この動画を見る 

福田のわかった数学〜高校2年生016〜折れ線の長さの最小値

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 直線の方程式
2点$A(5,1),B(2,8)$と$x$軸上、$y$軸上に
それぞれ2点$P,Q$がある。
$AP+PQ+QB$を最小にする点$P,Q$は?
この動画を見る 
PAGE TOP