軸が動く2次関数の場合分け 最小値 #Shorts - 質問解決D.B.(データベース)

軸が動く2次関数の場合分け 最小値 #Shorts

問題文全文(内容文):
軸が動く2次関数の場合分けに関して解説していきます.
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
軸が動く2次関数の場合分けに関して解説していきます.
投稿日:2022.02.23

<関連動画>

【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第2問解説

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の定数とする。区間$0\leqq x\leqq 1$で定義された関数$ y = x^2 ‐ ax + a$ について、次の問いに答えよ。
(1) この区間におけるyの最大値と最小値をaを用いて表せ。
(2) yの最小値が$\dfrac{7}{16}$となるようなaに対し、yの最大値を求めよ。
この動画を見る 

ケンブリッジ大学の入試問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\sqrt{3-2\sqrt 2} =$
a. $\sqrt 3 -1$
b. $\sqrt 2 -1$
c. $\sqrt 3 -\sqrt 2$

University of Cambridge
この動画を見る 

05愛知県教員採用試験(数学:1番 気合の式変形)

単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$ $x^2-x-1=0$の解を$\alpha,\beta(\alpha\gt \beta)$とする.

(1)$\alpha^{n+2}-\beta^{n+2}=\alpha^{n+1}-\beta^{n+1}+\alpha^n-\beta^n$を示せ.
$(n\in IN)$
(2)$\alpha^7-\beta^7$の値を求めよ.
この動画を見る 

【数Ⅰ】数と式:根号の外し方 次の(1)~(3)の場合について、√(a-1)² + √(a-3)² の根号をはずし簡単にせよ。(1)a≧3、(2)1≦a<3、(3)a<1

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の(1)~(3)の場合について、$\sqrt{(a-1)^2}+\sqrt{(a-3)^2}$ の根号をはずし簡単にせよ。
(1)$a≧3$、(2)$1≦a<3$、(3)$a<1$
この動画を見る 

京都府採用試験数学【2016】

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#場合の数と確率#平面上のベクトル#複素数平面#図形と計量#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#整数の性質#場合の数#確率#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#三角関数とグラフ#指数関数#対数関数#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#微分とその応用#積分とその応用#複素数平面#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#数学(高校生)#数C#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
1. x+y+z=10の正の整数解の個数を求めよ。

2. 3つのサイコロを投げる。
出る目の最大値と最小値の差が2になる確率を求めよ。

3. 複素数$(\frac{-1+\sqrt{3}i}{2})^{2015} + (\frac{-1-\sqrt{3}i}{2})^{2015}$

4. $log_{2}3$は無理数を示せ

5. $△OAB = \frac{|a_1b_2-a_2b_1|}{2}$を示せ
*図は動画内参照

6. f(x)=e^x sinx
(1) $0 \leqq x \leqq \pi$ y=f(x)の極大値を求めよ。

(2)x軸とy=f(x) ($0 \leqq x \leqq \pi$)で囲まれた面積を求めよ。

7. $\frac{1}{2015} , \frac{2}{2015} , \cdots , \frac{2015}{2015}$のうち既約分数の個数を求めよ。

8. $n \in \mathbb{ N }$
$2(\sqrt{n+1} - 1) < 1 + \frac{1}{\sqrt 2} + \frac{1}{\sqrt 3} + \cdots + \frac{1}{\sqrt n}$
この動画を見る 
PAGE TOP