福田の一夜漬け数学〜多変数関数、1文字固定(受験編) - 質問解決D.B.(データベース)

福田の一夜漬け数学〜多変数関数、1文字固定(受験編)

問題文全文(内容文):
$a+b+c=1$のとき、$a^2+b^2+c^2$の最小値を求めよ。

$xy$平面内の領域$-1 \leqq x \leqq 1,-1 \leqq y \leqq 1$ において、$1-ax-by+axy$
の最小値が正であるような$(a,b)$の存在範囲を図示せよ。
単元: #数Ⅱ#式と証明#図形と方程式#微分法と積分法#恒等式・等式・不等式の証明#軌跡と領域#平均変化率・極限・導関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a+b+c=1$のとき、$a^2+b^2+c^2$の最小値を求めよ。

$xy$平面内の領域$-1 \leqq x \leqq 1,-1 \leqq y \leqq 1$ において、$1-ax-by+axy$
の最小値が正であるような$(a,b)$の存在範囲を図示せよ。
投稿日:2018.04.08

<関連動画>

数学を数楽に

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: 数学を数楽に
問題文全文(内容文):
「$x>3$」の否定は「$x<3$」
この動画を見る 

【高校数学】 数Ⅱ-14 恒等式③

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の等式がx,yの恒等式となるように、定数a、b、cの値を定めよう。

①$(a+2b)x+(2a+3b-3)y+(b-3c)=0$

②$x^2+y^2=a(x+y)^2+b(x-y)^2$
この動画を見る 

【数Ⅱ】【式と証明】等式の証明3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a:b:c=x:y:z$のとき、
次の等式が成り立つことを証明せよ。
$(a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cz)^2$
この動画を見る 

福田のおもしろ数学477〜イェンゼンの不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

イェンゼンの不等式

$f(x)$は凸関数、$\lambda i \geqq 0, \sum \lambda i=1$のとき、

$\lambda 1 f(x 1)+\lambda 2 f(x2) \geqq f(\lambda2x2)$

$\lambda 1 f(x 1)+\lambda 2 f(x2)+\lambda3f(x3) \geqq f(\lambda1x1+\lambda2x2+\lambda3x3)$

な成り立つ。証明して下さい。
    
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第4問Part2〜不等式の証明と近似値計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{4}}$ $e$を自然対数の底とする。$e$=2.718...である。
(1)0≦$x$≦1において不等式1+$x$≦$e^x$≦1+2$x$が成り立つことを示せ。
(2)$n$を自然数とするとき、0≦$x$≦1において不等式
$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}$≦$e^x$≦$\displaystyle\sum_{k=0}^n\frac{x^k}{k!}+\frac{x^n}{n!}$
が成り立つことを示せ。
(3)0≦$x$≦1を定義域とする関数$f(x)$を
$f(x)$=$\left\{\begin{array}{1}
1 (x=0)\\
\displaystyle\frac{e^x-1}{x} (0<x≦1)
\end{array}\right.$
と定義する。(2)の不等式を利用して、定積分$\displaystyle\int_0^1f(x)dx$ の近似値を小数第3位まで求め、求めた近似値と真の値との誤差が$10^{-3}$以下である理由を説明せよ。
この動画を見る 
PAGE TOP