サンタが数学的にいない証明を論破 - 質問解決D.B.(データベース)

サンタが数学的にいない証明を論破

問題文全文(内容文):
数学的にサンタがいない?
論破
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#仕事算とニュートン算#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
数学的にサンタがいない?
論破
投稿日:2022.12.30

<関連動画>

【わかりやすく解説】中学の「展開」をおさらい!

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を展開せよ
(1)$(x+3)(2x-1)$
(2)$(x+3y)(x-3y)$
(3)$(x-5y)^2$
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第3問〜点の存在する条件と領域の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
Oを原点とする座標平面上で考える。座標平面上の2点$S(x_1,y_1),T(x_2,y_2)$
に対し、点Sが点Tから十分離れているとは、
$|x_1-x_2| \geqq 1$ または $|y_1-y_2| \geqq 1$
が成り立つことと定義する。
不等式
$0 \leqq x \leqq 3, 0 \leqq y \leqq 3$
が表す正方形の領域をDとし、その2つの頂点A(3,0), B(3,3)を考える。
さらに、次の条件$(\textrm{i}),(\textrm{ii})$を共に満たす点Pをとる。
$(\textrm{i})$点Pは領域Dの点であり、かつ、放物線$y=x^2$上にある。
$(\textrm{ii})$点Pは、3点O,A,Bのいずれからも十分離れている。
点Pのx座標をaとする。
(1)aのとりうる値の範囲を求めよ。
(2)次の条件$(\textrm{iii}),(\textrm{iv})$をともに満たす点Qが存在しうる範囲の面積f(a)を求めよ。
$(\textrm{iii})$点Qは領域Dの点である。
$(\textrm{iv})$点Qは、4点O,A,B,Pのいずれからも十分離れている。
(3)aは(1)で求めた範囲を動くとする。(2)のf(a)を最小にするaの値を求めよ。

2022東京大学理系過去問
この動画を見る 

ゆく年くる年問題 2019~2020

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(2019+2020)(2019^2+2020^2)(2019^4+2020^4)$
$\times(2019^8+2020^8)(2019^{16}+2020^{16})$
$(2019^{32}+2020^{32})=2020^x-2019^x$
これを解け.
この動画を見る 

目で見てわかる 相加平均と相乗平均の関係

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a+b}{2}$ $\sqrt {ab}$
どっちが大きい?(a>0, b>0)
*図は動画内参照
この動画を見る 

15神奈川県教員採用試験(数学:1番 整数問題)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣ xy-2x-y=10をみたす自然数x,yでx+yの最大値
この動画を見る 
PAGE TOP