このパスワード難しすぎる... - 質問解決D.B.(データベース)

このパスワード難しすぎる...

問題文全文(内容文):
$\displaystyle \int_{-2}^{ 2 } (x^3 \cos \frac{x}{2}+\frac{1}{2}) \sqrt{ 4-x^2dx }$
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle \int_{-2}^{ 2 } (x^3 \cos \frac{x}{2}+\frac{1}{2}) \sqrt{ 4-x^2dx }$
投稿日:2023.02.22

<関連動画>

【高校数学】毎日積分52日目 実践編③回転体シリーズ~軸からの最長距離と最短距離~【難易度:★★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの関数$f(x)=e^{-x} \sin x(0\leqq x\leqq 2\pi)$と$g(x)=-e^{-x}(0\leqq x\leqq 2\pi)$について、次の問いに答えよ。
(1)$f(x)$が最小値をとるときの$x$の値を求めよ。
(2)$f(x)=g(x)$をみたす$x$の値を求めよ。
(3)曲線$C1:y=f(x),C2:y=g(x)$と$y$軸で囲まれる部分を$x$軸のまわり
に1回転してできる立体の体積$V$を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題094〜青山学院大学2020年度理工学部第5問〜グラフと面積と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#体積・表面積・回転体・水量・変化のグラフ#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 関数$f(x)=\displaystyle\frac{1}{x^2+1}$について、以下の問いに答えよ。
(1)y=f(x)のグラフの概形を描け。凹凸も調べること。
(2)原点をOとし、y=f(x)のグラフの変曲点のうちx座標が正のものをPとする。
直線OPとy軸、y=f(x)のグラフとで囲まれた図形をDとする。Dの面積Sを求めよ。
(3)(2)の図形Dをy軸の周りに1回転してできる回転体の体積Vを求めよ。

2020青山学院大学理工学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題073〜東京理科大学2019年度理工学部第3問〜定積分と不等式そして極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 関数f(x)を$f(x)=\displaystyle\int_0^x\frac{dt}{1+t^2}$と定める。
(1)t=$\tan\theta$とおく置換積分により$f(1)=\displaystyle\int_0^1\frac{dt}{1+t^2}$の値を求めよ。
(2)0 $\lt$ $\alpha$ $\lt$ 1とし、mを自然数とするとき、以下の不等式が成り立つことを示せ。
$f(a)\displaystyle\int_a^1x^mdx$ $\lt$ $\displaystyle\int_a^1f(x)x^mdx$ $\lt$ $\displaystyle\int_0^1f(x)x^mdx$ $\lt$ $f(1)\displaystyle\int_0^1x^mdx$
(3)$\displaystyle\lim_{m \to \infty}\left(1-\frac{1}{\sqrt m}\right)^m$を求めよ。必要ならばs >1のとき$\displaystyle\left(1-\frac{1}{s}\right)^s \lt \frac{1}{2}$となることを用いてよい。
(4)$\displaystyle\lim_{m \to \infty}m\int_{1-\frac{1}{\sqrt m}}^1f(x)x^mdx$を求めよ。

2019東京理科大学理工学部過去問
この動画を見る 

【高校数学】群馬大学医学部の積分の問題をその場で解説しながら解いてみた!毎日積分96日目~47都道府県制覇への道~【㊴群馬】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【群馬大学(医) 2023】
$xy$平面上において、不等式$(ye^x)^2≦(sin2x)^2, 0≦x≦π$の表す領域を$D$とし、領域$D$と直線$x=a$の共通部分の線分の長さを$l(a)$とする。以下の問に答えよ。
(1) $l(a)$が$a=a_0$で最大となるとき、$tana_0$の値を求めよ。
(2)領域$D$の面積を求めよ。
この動画を見る 

#数学検定準1級2次過去問#69「展開が最短かも」 #定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x^4(1-x)^4$ $dx$

出典:数検準1級1次
この動画を見る 
PAGE TOP