早稲田 3次方程式と5次方程式の実数解の大きさ Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

早稲田 3次方程式と5次方程式の実数解の大きさ Mathematics Japanese university entrance exam

問題文全文(内容文):
早稲田大学過去問題
$x^3-3x-1=0$の実数解の最大のものをα
$x^2-2x^3-3x-m=0$の実数解の最大のものをβ(mは自然数)
(1)$\sqrt3 <α<2$を示せ
(2)β<αを満たす最大のm
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
早稲田大学過去問題
$x^3-3x-1=0$の実数解の最大のものをα
$x^2-2x^3-3x-m=0$の実数解の最大のものをβ(mは自然数)
(1)$\sqrt3 <α<2$を示せ
(2)β<αを満たす最大のm
投稿日:2018.10.03

<関連動画>

微分の定義!慶應義塾大

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023慶応義塾大学過去問題
$f(x)=x^4$とする
f(x)のx=aにおける微分係数を定義に従って求めなさい
計算過程も記述しなさい
この動画を見る 

福田の数学〜京都大学2022年文系第3問〜放物線と直交する2接線で囲まれる面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ xy平面上の2直線L_1,L_2は直交し、交点のx座標は\frac{3}{2}である。\\
また、L_1,L_2は共に曲線C:y=\frac{x^2}{4}に接している。このとき、L_1,L_2およびCで\\
囲まれる図形の面積を求めよ。
\end{eqnarray}

2022京都大学文系過去問
この動画を見る 

福田の数学〜大阪大学2023年文系第2問〜対数関数と3次関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 正の実数a, xに対して
y=$(\log_{\frac{1}{2}}x)^3$+$a\log_{\sqrt 2}x$$(\log_4x^3)$
とする。
(1)t=$\log_2x$とするとき、yをa, tを用いて表せ。
(2)xが$\frac{1}{2}$≦x≦8の範囲を動くとき、yの最大値Mをaを用いて表せ。

2023大阪大学文系過去問
この動画を見る 

福田の数学〜中央大学2021年理工学部第1問〜斜回転

アイキャッチ画像
単元: #大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 放物線C:y=x^2上の点(a,\ a^2) (a \gt 0)における法線lの方程式をy=f(x)\\
とおくと、f(x)=\boxed{\ \ ア\ \ }となる。またCとlの交点のうちPと異なる方の点Qを\\
求めると、Q(\boxed{\ \ イ\ \ },\ \boxed{\ \ イ\ \ }^2)となる。以下、Cとlで囲まれた部分をDとし、\\
Dをlの周りに1回転して得られる回転体の体積V(a)を求める。Dに含まれるl上\\
の点をR(t,\ f(t)) (\boxed{\ \ イ\ \ } \leqq t \leqq a)とおく。Rを通りlに垂直な直線は\\
y=2a(x-t)+f(t)で与えられる。この直線とy=x^2の2つの交点のうち\\
Dに含まれる方の点Sのx座標はx=a-\boxed{\ \ ウ\ \ }\sqrt{a-t}\ となる。このとき\\
線分RSの長さr=g(t)はg(t)=\boxed{\ \ エ\ \ }(t-a+\boxed{\ \ ウ\ \ }\sqrt{a-t})となる。\\
線分QRの長さs=h(t)はh(t)=\boxed{\ \ オ\ \ }(t-\boxed{\ \ イ\ \ })で与えられるので、\\
V(a)=\pi\int_0^{h(a)}r^2ds=\pi\int_{\boxed{イ}}^a\left\{g(t)\right\}^2h'(t)dt\\
=\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_{\boxed{イ}}^a(a-t)(-\sqrt{a-t}+\boxed{\ \ ウ\ \ })^2dt\\
となる。ここでu=\sqrt{a-t}とおいて置換積分を行えば\\
V(a)=2\pi\left\{(\boxed{\ \ エ\ \ })^2×\boxed{\ \ オ\ \ }\right\}\int_0^{\boxed{ウ}}\left\{u^5-2\boxed{\ \ ウ\ \ }u^4+(\boxed{\ \ ウ\ \ })^2u^3\right\}du=\boxed{\ \ カ\ \ }\\
が求まる。さらに、a \gt 0の範囲でaを動かすとき、\lim_{a \to +0}V(a)=\lim_{a \to \infty}V(a)=\infty\\
であり、V(a)を最小にするaの値はa=\boxed{\ \ キ\ \ }である。\\
\\
\\
\boxed{\ \ ア\ \ }\ の解答群\\
ⓐ-\frac{2}{a}(x-a)+a^2 ⓑ-\frac{1}{a}(x-a)+a^2 ⓒ-\frac{1}{2a}(x-a)+a^2 ⓓ-2a(x-a)+a^2\\
\\
\\
\boxed{\ \ イ\ \ }~\ \boxed{\ \ オ\ \ }\ の解答群\\
ⓐ-\frac{a^2-1}{a} ⓑ-\frac{2a^2-1}{2a} ⓒ-\frac{a^2+1}{a} ⓓ-\frac{2a^2+1}{2a}\\
ⓔ\frac{\sqrt{a^2+4}}{2} ⓕ\sqrt{a^2+1} ⓖ\sqrt{4a^2+1} ⓗ2a\\
ⓘ\frac{\sqrt{4a^2+1}}{2a} ⓙ\frac{\sqrt{a^2+4}}{a} ⓚ\frac{\sqrt{a^2+1}}{a} ⓛ\frac{\sqrt{a^2+1}}{2a}\\
ⓜ\sqrt{\frac{2a^2+1}{2a}} ⓝ\sqrt{\frac{4a^2+1}{2a}} ⓞ\sqrt{\frac{2a^2+1}{a}} ⓟ\sqrt{\frac{4a^2+1}{a}}\\
\\
\\
\boxed{\ \ カ\ \ }\ の解答群\\
ⓐ\frac{(2a^2+1)^3(a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓑ\frac{(2a^2+1)^{\frac{9}{2}}}{120a^4}\ \pi ⓒ\frac{(2a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi\\
ⓓ\frac{(2a^2+1)^3(4a^2+1)^{\frac{3}{2}}}{60a^4}\ \pi ⓔ\frac{(4a^2+1)^{\frac{9}{2}}}{480a^4}\ \pi ⓕ\frac{(4a^2+1)^{\frac{9}{2}}}{60a^4}\ \pi\\
ⓖ\frac{(a^2+1)^2(4a^2+1)^2}{120a^{\frac{7}{2}}}\ \pi ⓗ\frac{(4a^2+1)^4}{480\sqrt2a^{\frac{7}{2}}}\ \pi ⓘ\frac{(4a^2+1)^4}{120\sqrt2a^{\frac{7}{2}}}\ \pi\\
\\
\\
\boxed{\ \ キ\ \ }\ の解答群\\
ⓐ\frac{1}{\sqrt5} ⓑ\frac{1}{\sqrt2} ⓒ1 ⓓ\sqrt2 ⓔ\frac{2}{\sqrt5} ⓕ4
\end{eqnarray}

2021中央大学理工学部過去問
この動画を見る 

福田のわかった数学〜高校2年生051〜領域(6)領域と最大最小(2)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 領域(6) 領域と最大最小(2)\\
x \geqq 0, y \geqq 0, 3x+y \leqq 9, x+2y \leqq 8\\
のとき、\\
ax+y の最大値を\ a\ で表せ。
\end{eqnarray}
この動画を見る 
PAGE TOP