問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 一辺の長さが2である立方体ABCD-EFGHの内部に半径rの球S(r \gt 0)が\\
存在する。球Sは立方体ABCD-EFGHの少なくとも1つの面と接しながら動く。\\
このとき、立方体ABCD-EFGHの内部で球Sが通過しえない領域の体積Vは\\
\\
(\textrm{i})0 \lt r \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}のとき \\
V=\left(\boxed{\ \ ウエオ\ \ }+\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}\pi\right)r^3+(\boxed{\ \ コサシ\ \ }+\boxed{\ \ スセ\ \ }\pi)r^2\\
+\boxed{\ \ ソタチ\ \ }r+\boxed{\ \ ツテ\ \ }\\
\\
(\textrm{ii})\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }} \leqq r \leqq 1のとき \\
V=\left(\boxed{\ \ トナニ\ \ }+\frac{\boxed{\ \ ヌネ\ \ }}{\boxed{\ \ ノハ\ \ }}\pi\right)r^3+(\boxed{\ \ ヒフヘ\ \ }+\boxed{\ \ ホマ\ \ }\pi)r^2
\end{eqnarray}
2019慶應義塾大学総合政策学部過去問
\begin{eqnarray}
{\Large\boxed{3}} 一辺の長さが2である立方体ABCD-EFGHの内部に半径rの球S(r \gt 0)が\\
存在する。球Sは立方体ABCD-EFGHの少なくとも1つの面と接しながら動く。\\
このとき、立方体ABCD-EFGHの内部で球Sが通過しえない領域の体積Vは\\
\\
(\textrm{i})0 \lt r \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}のとき \\
V=\left(\boxed{\ \ ウエオ\ \ }+\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}\pi\right)r^3+(\boxed{\ \ コサシ\ \ }+\boxed{\ \ スセ\ \ }\pi)r^2\\
+\boxed{\ \ ソタチ\ \ }r+\boxed{\ \ ツテ\ \ }\\
\\
(\textrm{ii})\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }} \leqq r \leqq 1のとき \\
V=\left(\boxed{\ \ トナニ\ \ }+\frac{\boxed{\ \ ヌネ\ \ }}{\boxed{\ \ ノハ\ \ }}\pi\right)r^3+(\boxed{\ \ ヒフヘ\ \ }+\boxed{\ \ ホマ\ \ }\pi)r^2
\end{eqnarray}
2019慶應義塾大学総合政策学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 一辺の長さが2である立方体ABCD-EFGHの内部に半径rの球S(r \gt 0)が\\
存在する。球Sは立方体ABCD-EFGHの少なくとも1つの面と接しながら動く。\\
このとき、立方体ABCD-EFGHの内部で球Sが通過しえない領域の体積Vは\\
\\
(\textrm{i})0 \lt r \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}のとき \\
V=\left(\boxed{\ \ ウエオ\ \ }+\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}\pi\right)r^3+(\boxed{\ \ コサシ\ \ }+\boxed{\ \ スセ\ \ }\pi)r^2\\
+\boxed{\ \ ソタチ\ \ }r+\boxed{\ \ ツテ\ \ }\\
\\
(\textrm{ii})\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }} \leqq r \leqq 1のとき \\
V=\left(\boxed{\ \ トナニ\ \ }+\frac{\boxed{\ \ ヌネ\ \ }}{\boxed{\ \ ノハ\ \ }}\pi\right)r^3+(\boxed{\ \ ヒフヘ\ \ }+\boxed{\ \ ホマ\ \ }\pi)r^2
\end{eqnarray}
2019慶應義塾大学総合政策学部過去問
\begin{eqnarray}
{\Large\boxed{3}} 一辺の長さが2である立方体ABCD-EFGHの内部に半径rの球S(r \gt 0)が\\
存在する。球Sは立方体ABCD-EFGHの少なくとも1つの面と接しながら動く。\\
このとき、立方体ABCD-EFGHの内部で球Sが通過しえない領域の体積Vは\\
\\
(\textrm{i})0 \lt r \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}のとき \\
V=\left(\boxed{\ \ ウエオ\ \ }+\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}\pi\right)r^3+(\boxed{\ \ コサシ\ \ }+\boxed{\ \ スセ\ \ }\pi)r^2\\
+\boxed{\ \ ソタチ\ \ }r+\boxed{\ \ ツテ\ \ }\\
\\
(\textrm{ii})\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }} \leqq r \leqq 1のとき \\
V=\left(\boxed{\ \ トナニ\ \ }+\frac{\boxed{\ \ ヌネ\ \ }}{\boxed{\ \ ノハ\ \ }}\pi\right)r^3+(\boxed{\ \ ヒフヘ\ \ }+\boxed{\ \ ホマ\ \ }\pi)r^2
\end{eqnarray}
2019慶應義塾大学総合政策学部過去問
投稿日:2023.01.01