福田の1.5倍速演習〜合格する重要問題047〜慶應義塾大学2019年度総合政策学部第3問〜立方体の内部を面に接しながら動く球の通過できない領域 - 質問解決D.B.(データベース)

福田の1.5倍速演習〜合格する重要問題047〜慶應義塾大学2019年度総合政策学部第3問〜立方体の内部を面に接しながら動く球の通過できない領域

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 一辺の長さが2である立方体ABCD-EFGHの内部に半径rの球S(r \gt 0)が\\
存在する。球Sは立方体ABCD-EFGHの少なくとも1つの面と接しながら動く。\\
このとき、立方体ABCD-EFGHの内部で球Sが通過しえない領域の体積Vは\\
\\
(\textrm{i})0 \lt r \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}のとき                    \\
V=\left(\boxed{\ \ ウエオ\ \ }+\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}\pi\right)r^3+(\boxed{\ \ コサシ\ \ }+\boxed{\ \ スセ\ \ }\pi)r^2\\
+\boxed{\ \ ソタチ\ \ }r+\boxed{\ \ ツテ\ \ }\\
\\
(\textrm{ii})\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }} \leqq r \leqq 1のとき                    \\
V=\left(\boxed{\ \ トナニ\ \ }+\frac{\boxed{\ \ ヌネ\ \ }}{\boxed{\ \ ノハ\ \ }}\pi\right)r^3+(\boxed{\ \ ヒフヘ\ \ }+\boxed{\ \ ホマ\ \ }\pi)r^2
\end{eqnarray}

2019慶應義塾大学総合政策学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 一辺の長さが2である立方体ABCD-EFGHの内部に半径rの球S(r \gt 0)が\\
存在する。球Sは立方体ABCD-EFGHの少なくとも1つの面と接しながら動く。\\
このとき、立方体ABCD-EFGHの内部で球Sが通過しえない領域の体積Vは\\
\\
(\textrm{i})0 \lt r \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}のとき                    \\
V=\left(\boxed{\ \ ウエオ\ \ }+\frac{\boxed{\ \ カキ\ \ }}{\boxed{\ \ クケ\ \ }}\pi\right)r^3+(\boxed{\ \ コサシ\ \ }+\boxed{\ \ スセ\ \ }\pi)r^2\\
+\boxed{\ \ ソタチ\ \ }r+\boxed{\ \ ツテ\ \ }\\
\\
(\textrm{ii})\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }} \leqq r \leqq 1のとき                    \\
V=\left(\boxed{\ \ トナニ\ \ }+\frac{\boxed{\ \ ヌネ\ \ }}{\boxed{\ \ ノハ\ \ }}\pi\right)r^3+(\boxed{\ \ ヒフヘ\ \ }+\boxed{\ \ ホマ\ \ }\pi)r^2
\end{eqnarray}

2019慶應義塾大学総合政策学部過去問
投稿日:2023.01.01

<関連動画>

2021久留米大(医)三次方程式と複素平面

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a\lt 0,a,b$は実数である.
$x^3-2(a+1)x^2+(5a^2+1)x+b-0$の3つの解は$2,z,\omega$である.
複素平面上で3点,$2,z,\omega$を結ぶと直角二等辺三角形になる.
$a,b,z,\omega$を求めよ.

2021久留米(医)
この動画を見る 

【数Ⅱ】図形と方程式:x²+y²+4x-6y+13=0はどのような図形を表しているでしょう?

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^2+y^2+4x-6y+13=0$はどのような図形を表しているか?
この動画を見る 

福田の数学〜早稲田大学2021年教育学部第1問〜高次方程式の実数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (1)方程式$x^4+5x^3-3x^2+4x+2=0$ は複素数$\displaystyle \frac{1+\sqrt3i}{2}$を解に持つ。
この方程式の実数解を全て求めよ。

2021早稲田大学教育学部過去問
この動画を見る 

福田のわかった数学〜高校2年生040〜軌跡(7)円周角

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 軌跡(7) 円周角\hspace{160pt}\\
2点\ A(1,0),\ B(0,1)に対し\angle APB=45°を満たす点Pの軌跡を図示せよ。
\end{eqnarray}
この動画を見る 

福田のわかった数学〜高校2年生084〜三角関数(23)重要な変形(1)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 三角関数(23) 重要な変形(1)\\
\triangle ABCにおいて\\
\sin2A+\sin2B+\sin2C=4\sin A\sin B\sin C\\
を証明せよ。
\end{eqnarray}
この動画を見る 
PAGE TOP