問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 座標平面上において、放物線\ y=x^2上の点をP、円(x-3)^2+(y-1)^2=1\ 上の\\
点をQ、直線\ y=x-4上の点をRとする。次の設問に答えよ。\\
\\
(1)QR の最小値を求めよ。\\
(2)PR+QR の最小値を求めよ。
\end{eqnarray}
2019早稲田大学商学部過去問
\begin{eqnarray}
{\Large\boxed{2}} 座標平面上において、放物線\ y=x^2上の点をP、円(x-3)^2+(y-1)^2=1\ 上の\\
点をQ、直線\ y=x-4上の点をRとする。次の設問に答えよ。\\
\\
(1)QR の最小値を求めよ。\\
(2)PR+QR の最小値を求めよ。
\end{eqnarray}
2019早稲田大学商学部過去問
単元:
#数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#微分法と積分法#点と直線#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 座標平面上において、放物線\ y=x^2上の点をP、円(x-3)^2+(y-1)^2=1\ 上の\\
点をQ、直線\ y=x-4上の点をRとする。次の設問に答えよ。\\
\\
(1)QR の最小値を求めよ。\\
(2)PR+QR の最小値を求めよ。
\end{eqnarray}
2019早稲田大学商学部過去問
\begin{eqnarray}
{\Large\boxed{2}} 座標平面上において、放物線\ y=x^2上の点をP、円(x-3)^2+(y-1)^2=1\ 上の\\
点をQ、直線\ y=x-4上の点をRとする。次の設問に答えよ。\\
\\
(1)QR の最小値を求めよ。\\
(2)PR+QR の最小値を求めよ。
\end{eqnarray}
2019早稲田大学商学部過去問
投稿日:2023.01.03