立教大 微分・積分 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

立教大 微分・積分 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
立教大学過去問題
$f(x)=x^3+3x^2+4$に(1,a)からちょうど2本の接線が引ける。
最小のaに対して2本の接線とf(x)で囲まれる面積
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
立教大学過去問題
$f(x)=x^3+3x^2+4$に(1,a)からちょうど2本の接線が引ける。
最小のaに対して2本の接線とf(x)で囲まれる面積
投稿日:2018.10.21

<関連動画>

【高校数学】数Ⅱ:微分法と積分法:定積分の計算(同じ積分範囲)【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の定積分を求めよ。
$\displaystyle \int_{-2}^{3}(2x^2+4x-3)dx-2 \int_{-2}^{3}(x^2+4x+3)dx$
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第2問〜確率と極限

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#場合の数と確率#確率#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)2n個の玉があり、そのうちk個は赤、他は白とする。ただし$n>k>1$である。
また袋A, Bが用意されているとする。
(1) 2n 個の玉からn個を無作為に選んで袋Aに入れ、残りを袋Bに入れる。袋A
にi個 $(0 \leqq i \leqq k)$ の赤玉が入る確率を $p(n, k, i)$ とおく。kとiを固定して$n \to \infty$
とするときの p(n, k, i) の極限値をkとiの式で表すと $\lim_{n \to \infty} p(n, k, i) =\boxed{\ \ ア\ \ }$
となる。また$n>3$のとき $p(n, 3, 1) = \boxed{\ \ イ\ \ }$である。
以下、$n>k=3$として、袋Aに赤玉が1個、袋Bに赤玉が2個入っている状態を
状態Sと呼ぶ。また袋A, Bのそれぞれから同時に玉を1個ずつ無作為に取り出し
て、玉が入っていた袋と逆の袋に入れる操作を操作Tと呼ぶ。
(2) 状態 Sから始めて操作を1回行った後で袋Aから玉を1個無作為に取り出す
とき、取り出した玉が赤玉である確率は$\boxed{\ \ ウ\ \ }$である。また、取り出した玉が赤玉
だったとき、操作 T終了後に袋Aに赤玉が2個入っていた条件つき確率は$\boxed{\ \ エ\ \ }$
である。
(3)状態Sから始めて操作Tを3回繰り返し行った後に、袋Aに赤玉が3個入っている
確率は$\boxed{\ \ オ\ \ }$である。
(4)状態Sから初めて袋A,Bのそれぞれから同時に玉を3個ずつ無作為に取り出して、
それらを玉が入っていた袋と逆の袋に入れた後に、袋Aに赤玉が3個入っている
確率は$\boxed{\ \ カ\ \ }$である。

2022慶應義塾大学医学部過去問
この動画を見る 

【二項定理のキホン】二項定理の基礎を解説しました!〔数学 高校数学〕

アイキャッチ画像
単元: #数Ⅱ#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
二項定理の基礎について解説します。
この動画を見る 

奈良県立医大 三角関数 最大最小 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
奈良県立医科大学過去問題
$0^\circ \leqq θ \leqq 90^\circ$
$(2cosθ-3sinθ)sinθ$の最大値と最小値を求めよ。
この動画を見る 

【高校数学】 数Ⅱ-134 対数とその性質④

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\log_23=a,\log_37=b$とするとき、$\log_{42}56$を$a,b$で表そう。

②$\log_{10}6=0.7782,\log_{10}12=1.0792$とするとき、$\log_{10}2,\log_{10}3$の値を求めよう。
この動画を見る 
PAGE TOP