大阪教育大 微分 3次関数 最大値 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

大阪教育大 微分 3次関数 最大値 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
'08大阪教育大学過去問題
$f(x)=-x^3-3x^2+3kx+3k+2$の$-1 \leqq x \leqq 1 $における最大値
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'08大阪教育大学過去問題
$f(x)=-x^3-3x^2+3kx+3k+2$の$-1 \leqq x \leqq 1 $における最大値
投稿日:2018.11.07

<関連動画>

複素数の基本問題 岡山県立大

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数と方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022岡山県立大学過去問題
$z=1+\sqrt{3}+(\sqrt{3}-1)i$
$z^{n}$が正の実数となる自然数nは100以下に何個あるか?
この動画を見る 

山梨大 複素数の4乗根

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z$複素数
$z^4=-8-8\sqrt{ 3 }i$

出典:山梨大学 過去問
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第1問(2)〜高次方程式と解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)A, B, C, Dを定数とする。$f(x)$=$2x^3$-$9x^2$+$Ax$+$B$, $g(x)$=$x^2$-$Cx$-$D$
とおく。以下の問いに答えよ。
(a)$g(1-\sqrt 2)$=0 かつ $g(1+\sqrt 2)$=0のとき、$C$=$\boxed{\ \ セ\ \ }$, $D$=$\boxed{\ \ ソ\ \ }$である。また、$f(1-\sqrt 2)$=0 かつ $f(1+\sqrt 2)$=0のとき、$A$=$\boxed{\ \ タ\ \ }$, $B$=$\boxed{\ \ チ\ \ }$であり、方程式$f(x)$=0を満たす有理数$x$は
$x$=$\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}$
である。
この動画を見る 

【数Ⅱ】高2生必見!! 2020年度 第2回 K塾高2模試 大問5_式と証明・複素数と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数の定数とする。xの3次式 $P(x)=x^3+3x^2+3x+a$ があり、$P(-2)=0$を満たす。
(1)aの値を求めよ。
(2)方程式$P(x)=0$を解け。
(3)方程式$P(x)=0$の虚数解のうち、虚部が正であるものを$\alpha$、虚部が負であるもの を$\beta$と表す。また、方程式$P(x)=0$の実数解を$γ$と表す。さらに、$A=\alpha+1、B=\beta+1、 C=γ+1$とする。
(i)$A^2+B^2、A^3、B^3$の3つの値をそれぞれ求めよ。
(ii)nを2020以下の正の整数とする。$A^n+B^n+C^n=0$を満たすnの個数を求めよ。
この動画を見る 

数学「大学入試良問集」【2−1 解と係数の関係】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
3方程式 $x^3-2x^2+3x-4=0$の3つの解を複素数の範囲で考え、それらを$\alpha,\beta,\gamma$とする。
以下の問いに答えよ。
(1)$\alpha^4+\beta^4+\gamma^4$の値を求めよ。
(2)$\alpha^5+\beta^5+\gamma^5$の値を求めよ。
この動画を見る 
PAGE TOP