三角関数 数 三角関数の不等式2【NI・SHI・NOがていねいに解説】 - 質問解決D.B.(データベース)

三角関数 数 三角関数の不等式2【NI・SHI・NOがていねいに解説】

問題文全文(内容文):
$0\leqq θ\lt 2π$のとき,次の不等式を解け。
(1) $\sin (θ+\displaystyle \frac{π}{4})\leqq \displaystyle \frac{\sqrt{3}}{2}$

(2) $\tan (θ-\displaystyle \frac{π}{6})\gt 1$

(3) $\cos (θ-\displaystyle \frac{π}{3})\lt -\displaystyle \frac{\sqrt{3}}{2}$

(4) $\tan (θ+\displaystyle \frac{π}{6})\geqq -\sqrt{3}$
チャプター:

0:00 (1)解説開始!
6:06 (2)解説開始!
11:30 (3)解説開始!
14:10 (4)解説開始!

単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0\leqq θ\lt 2π$のとき,次の不等式を解け。
(1) $\sin (θ+\displaystyle \frac{π}{4})\leqq \displaystyle \frac{\sqrt{3}}{2}$

(2) $\tan (θ-\displaystyle \frac{π}{6})\gt 1$

(3) $\cos (θ-\displaystyle \frac{π}{3})\lt -\displaystyle \frac{\sqrt{3}}{2}$

(4) $\tan (θ+\displaystyle \frac{π}{6})\geqq -\sqrt{3}$
投稿日:2024.05.21

<関連動画>

【わかりやすく】三角方程式(2次方程式を利用)【数学Ⅰ三角比】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき、次の等式を満たす$\theta$を求めよ。
$2\sin^2\theta-3\cos\theta=0$
この動画を見る 

【コツ】三角関数のグラフの書き方

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
三角関数のグラフの書き方紹介動画です
-----------------
(1)$y=\sin(\theta -\displaystyle \frac{\pi}{3})$

(2)$y=\cos(\theta+\displaystyle \frac{\pi}{6})$

(3)$y=\tan(\theta-\displaystyle \frac{\pi}{4})$
この動画を見る 

福田のわかった数学〜高校2年生070〜三角関数(9)三角方程式の共通解

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(9) 三角方程式の共通解
次の連立方程式$0 \leqq x \lt 2\pi$に共通解をもつとき
aの値とそのときの共通解を求めよ。
$\begin{eqnarray}
\left\{
\begin{array}{l}
\sin2x+a\cos x=0 \\
\cos2x+a\sin x=0
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

三角関数の方程式

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$ \cos^2x+\cos^22x+\cos^23x=1$
この動画を見る 

福田の数学〜上智大学2024TEAP利用型文系第3問(3)〜直線の回転

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}(3)$座標平面において、直線$y=2x-3$を、原点を中心に反時計回りに45°回転して得られる直線は$y=\boxed{メ}x+\boxed{モ}\sqrt{\boxed{ヤ}}$である。
この動画を見る 
PAGE TOP