整式の剰余2022 - 質問解決D.B.(データベース)

整式の剰余2022

問題文全文(内容文):
$ x^{2022}$を$ x^6-x^5+x^4-x^3+x^2-x+1$で割った余りを求めよ.
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^{2022}$を$ x^6-x^5+x^4-x^3+x^2-x+1$で割った余りを求めよ.
投稿日:2022.03.14

<関連動画>

大学入試問題#434「基本的な式変形」 藤田医科大学(2023) #式変形

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: ますただ
問題文全文(内容文):
$\alpha=\sqrt{ 6+2\sqrt{ 5 } }$のとき
$\alpha^5-\alpha^4-12\alpha^3+12\alpha^2+16\alpha$の値を求めよ。

出典:2023年藤田医科大学 入試問題
この動画を見る 

福田のわかった数学〜高校2年生第8回〜相加相乗平均の関係

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 相加相乗平均の関係
$a\gt0,b\gt0,c\gt0$のとき、次の最小値を求めよ。
(1)$(a+b+c)\left(\displaystyle \frac{1}{a}+\displaystyle \frac{1}{b}+\displaystyle \frac{1}{c}\right)$
(2)$(a+2b+4c)\left(\displaystyle \frac{1}{a}+\displaystyle \frac{2}{b}+\displaystyle \frac{4}{c}\right)$
この動画を見る 

レピュニット数の剰余

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\underbrace{11111・・・・・・・11}_{100個}$を81で割った余りを求めよ.
この動画を見る 

福田のおもしろ数学526〜数値評価

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{1}{2027} \lt \dfrac{1}{2}・\dfrac{3}{4}・\dfrac{5}{6}・\cdots ・\dfrac{2025}{2026}$

を証明して下さい。
     
この動画を見る 

【数Ⅱ】【式と証明】等式の証明3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a:b:c=x:y:z$のとき、
次の等式が成り立つことを証明せよ。
$(a^2+b^2+c^2)(x^2+y^2+z^2)=(ax+by+cz)^2$
この動画を見る 
PAGE TOP