共通1次試験 整数 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

共通1次試験 整数 Mathematics Japanese university entrance exam

問題文全文(内容文):
共通一次試験
m,k自然数 求めよ
$2+\frac{1}{k+\frac{1}{m+\frac{1}{5}}}=\frac{803}{371}$
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
共通一次試験
m,k自然数 求めよ
$2+\frac{1}{k+\frac{1}{m+\frac{1}{5}}}=\frac{803}{371}$
投稿日:2018.11.25

<関連動画>

中1も挑戦できる整数問題  大阪教育大附属池田

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
1から20までの自然数のうち素数であるものの積をA、素数でないものをBとする
AとBの最大公約数は?
大阪教育大学附属高等学校池田校舎
この動画を見る 

図形×整数問題!差がつく問題です【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
直角三角形の3辺の長さがすべて整数のとき、面積は2の整数倍であることを示せ。

一橋大過去問
この動画を見る 

【知っ得…!】整数:明治大学付属中野高等学校~全国入試問題解法

単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ある自然数nは、正の約数を3個だけ持ち、その約数の総和が871である。この自然数を求めよ。$
この動画を見る 

一橋大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$自然数
$3p^3-p^2q-pq^2+3q^3=2013$を満たす$(p,q)$すべて求めよ

出典:一橋大学 過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$を整数とする.
$m^2+1=2^n$
これを解け.
この動画を見る 
PAGE TOP