東北大(n+1)次方程式の解の個数 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

東北大(n+1)次方程式の解の個数 Mathematics Japanese university entrance exam

問題文全文(内容文):
'83東北大学過去問題
$n \geqq 3$整数
$f(x)=2x^{n+1}-4x^n+3$
(1)$f(\frac{3}{2})$の符号
(2)方程式、$f(x)=0$の正の解、負の解の個数
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'83東北大学過去問題
$n \geqq 3$整数
$f(x)=2x^{n+1}-4x^n+3$
(1)$f(\frac{3}{2})$の符号
(2)方程式、$f(x)=0$の正の解、負の解の個数
投稿日:2018.11.30

<関連動画>

福田のおもしろ数学144〜連続する6個の自然数を積の等しい2グループに分けられない証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
連続する6個の自然数を2つのグループに分けて、それぞれのグループに属する自然数の積を等しくすることはできない。
これを示せ。
この動画を見る 

指数方程式だよ

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数解$x$を求めよ.
$4・3^{x+2}+14・5^x~25^x+49$
この動画を見る 

福田のおもしろ数学497〜gcdとlcmを使った方程式の整数解

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

正の整数$a,b$が次の式を満たしている。

$ab=gcd(a,b)+Icm(a,b)$

このような$(a,b)$の組をすべて求めて下さい。

$gcd(a,b)$は$a,b$の最大公約数、

$Icm(a,b)$は$a,b$の最小公倍数とする。
    
この動画を見る 

福田の数学〜立教大学2024年理学部第2問〜反復試行の確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$1$ から $6$ の番号がひとつずつ重複なくつけられた $6$ つの箱がある。このとき、次の試行を行う。
$\fbox{さいころを $1$ つ投げて、出た目の番号のついた箱に玉を $1$ つ入れる。}$
この試行を繰り返し、いずれかの箱に玉が $3$ 個入った時点で終了する。ただし、$1$ 回目の試行を行う前は、どの箱にも玉は $1$ 個も入っていないとする。終了するまでに行った試行の回数を $N$ とする。
$(1)$ $N$ のとりうる最小値 $N_0$ と最大値 $N_1$ をそれぞれ求めよ。
$(2)$ $N=N_{0}$ となる確率を求めよ。
$(3)$ $N=N_{0}+1$ となる確率を求めよ。
$(4)$ 試行を $6$ 回行った時点で、すべての箱に $1$ つずつ玉が入るという事象を $A$ とする。また、$N=N_{1}$ となる事象を $B$ とする。事象 $A$ が起こったときの事象 $B$ が起こる条件付き確率 $P_{A}(B)$ を求めよ。
$(5)$ $N=N_{1}$ となる確率を $P$ とするとき、$6^{8}P$ は整数となる。その値を求めよ。
この動画を見る 

【高校数学あるある】よく見る問題!下4桁を求めよ! #Shorts

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$99^{99}$の下4桁を求めよ。
この動画を見る 
PAGE TOP