問題文全文(内容文):
'83東北大学過去問題
$n \geqq 3$整数
$f(x)=2x^{n+1}-4x^n+3$
(1)$f(\frac{3}{2})$の符号
(2)方程式、$f(x)=0$の正の解、負の解の個数
'83東北大学過去問題
$n \geqq 3$整数
$f(x)=2x^{n+1}-4x^n+3$
(1)$f(\frac{3}{2})$の符号
(2)方程式、$f(x)=0$の正の解、負の解の個数
単元:
#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
'83東北大学過去問題
$n \geqq 3$整数
$f(x)=2x^{n+1}-4x^n+3$
(1)$f(\frac{3}{2})$の符号
(2)方程式、$f(x)=0$の正の解、負の解の個数
'83東北大学過去問題
$n \geqq 3$整数
$f(x)=2x^{n+1}-4x^n+3$
(1)$f(\frac{3}{2})$の符号
(2)方程式、$f(x)=0$の正の解、負の解の個数
投稿日:2018.11.30