大阪大 整数問題 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

大阪大 整数問題 Mathematics Japanese university entrance exam

問題文全文(内容文):
'13大阪大学過去問題
$n+1,n^3+3,n^5+5,n^7+7$
すべてが素数となるような自然数nは存在しないことを示せ
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'13大阪大学過去問題
$n+1,n^3+3,n^5+5,n^7+7$
すべてが素数となるような自然数nは存在しないことを示せ
投稿日:2018.12.01

<関連動画>

琉球大 剰余 二項定理

アイキャッチ画像
単元: #数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$31^n$を$900$で割った余りが最大になる自然数$n$のうち最小の$n$を求めよ.

1987琉球大過去
この動画を見る 

2022関西医科 超基本問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x=\displaystyle \frac{6x^2+17x+10}{3x-2}$
(1)$f(x) \gt 0$を解け
(2)$f(n)$の値が自然数となる整数$n$
を求めよ。
2022年 関西医科過去問
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第3問〜整式の割り算の余りと整数の余りの割り算の関係

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} kを3以上の整数とする。k進法で2021_{k}と表される整数Nを考える。次の問いに答えよ。\\
(1)Nがk-1で割り切れるときのkの値を求めよ。\\
\\
(2)Nをk+1で割ったときの余りをkで表せ。\\
\\
(3)Nをk+2で割ったときの余りが1となるkを全て求めよ。
\end{eqnarray}

2021早稲田大学社会科学部過去問
この動画を見る 

福井大 漸化式と整数問題の融合

アイキャッチ画像
単元: #数Ⅰ#整数の性質#約数・倍数・整数の割り算と余り・合同式#漸化式#数学(高校生)#福井大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2010福井大学過去問題
k,n自然数
$a_1=k$
$a_{n+1}=2a_n+1$
①$a_{n+4}-a_n$は15の倍数であることを示せ
②$a_{2010}$が15の倍数となる最小のk
この動画を見る 

自作 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$10^{2020}-1$を$3^5$で割った余りを求めよ.
この動画を見る 
PAGE TOP