【数C】30分でベクトルを総まとめしてみた【1.5倍速推奨 / 教科書レベル】 - 質問解決D.B.(データベース)

【数C】30分でベクトルを総まとめしてみた【1.5倍速推奨 / 教科書レベル】

問題文全文(内容文):
【数B】30分でベクトルを総まとめ動画です
-----------------
$\vec{ a }=(1,-2)$とのなす角が$45^{ \circ }$で、大きさが$\sqrt{ 10 }$のベクトルを求めよ。
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数B】30分でベクトルを総まとめ動画です
-----------------
$\vec{ a }=(1,-2)$とのなす角が$45^{ \circ }$で、大きさが$\sqrt{ 10 }$のベクトルを求めよ。
投稿日:2019.09.22

<関連動画>

【数B】ベクトル:ベクトルの基本⑭係数比較、メネラウスの定理でベクトルを求める

アイキャッチ画像
単元: #数A#図形の性質#平面上のベクトル#内心・外心・重心とチェバ・メネラウス#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD,BEの交点をPとする。ABをb,ACをcとするとき、APをb,cを用いて表せ.
この動画を見る 

【数B】ベクトルの大きさ、単位ベクトルとは??

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\vert \overrightarrow{a}\vert=5$である$\overrightarrow{a}$がある。
(1) $\overrightarrow{a}$と同じ向きの単位ベクトルを、$\overrightarrow{a}$を用いて表せ。
(2) $\overrightarrow{a}$と平行で、大きさが3のベクトルを、$\overrightarrow{a}$を用いて表せ。
この動画を見る 

【数C】ベクトルの基本④内積の基本的な考え方

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本的な考え方
直角三角形ABCにおいて内積AB・AC、BA・BC、CA・CB、AB・BCを求めよ。
この動画を見る 

福田の数学〜九州大学2023年理系第3問〜ベクトルと論証PART3

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#平面上のベクトル#集合と命題(集合・命題と条件・背理法)#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。座標平面上のベクトル$\overrightarrow{q}$に対して、次の条件を考える。
条件Ⅰ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす実数r, sが存在する。
条件Ⅱ $r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$を満たす整数r, sが存在する。
以下の問いに答えよ。
(1)条件Ⅰがすべての$\overrightarrow{q}$に対して成り立つとする。D $\ne$ 0であることを示せ。
以下、D $\ne$ 0であるとする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}・\overrightarrow{v}$=$\overrightarrow{n}・\overrightarrow{w}$=1, $\overrightarrow{m}・\overrightarrow{w}$=$\overrightarrow{n}・\overrightarrow{v}$=0
を満たすものを求めよ。
(3)さらにa, b, c, dが整数であるとし、x成分とy成分がともに整数であるすべてのベクトル$\overrightarrow{q}$に対して条件Ⅱが成り立つとする。Dのとりうる値をすべて求めよ。

2023九州大学理系過去問
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分5 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\vec{ a }=(3 ,1)$ ,$\vec{ b }=(1 ,2)$ のとし、$\vec{ c }=\vec{ a }+t\vec{ b }$ (tは実数)とする。
(1) $| \vec{ c } |=\sqrt{15}$ のとき、tの値を求めよ。
(2) $| \vec{ c } |$の最小値と、そのときのtの値を求めよ。
この動画を見る 
PAGE TOP